Assessing the ecotoxicity of metal nano-oxides with potential for wastewater treatment
详细信息    查看全文
  • 作者:V. Nogueira ; I. Lopes ; T. A. P. Rocha-Santos…
  • 关键词:Ecotoxicity ; Aquatic organisms ; Nanomaterials ; Sublethal and lethal effects ; Wastewater treatment
  • 刊名:Environmental Science and Pollution Research
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:22
  • 期:17
  • 页码:13212-13224
  • 全文大小:468 KB
  • 参考文献:Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M (2006) Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med (Chic Ill) 56:300-06. doi:10.-093/?occmed/?kql051 CrossRef
    ASTM (1980) Standard practice for conducting acute toxicity tests with fishes, macroinvertebrates and amphibians. ASTM (American Society for Testing and Materials), Philadelphia
    Ates M, Daniels J, Arslan Z, Farah I (2013) Effects of aqueous suspensions of titanium dioxide nanoparticles on Artemia salina: assessment of nanoparticle aggregation, accumulation, and toxicity. Environ Monit Assess 185:3339-348. doi:10.-007/?s10661-012-2794-7 CrossRef
    Baek Y-W, An Y-J (2011) Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to escherichia coli, bacillus subtilis, and streptococcus aureus. Sci Total Environ 409:1603-608. doi:10.-016/?j.?scitotenv.-011.-1.-14 CrossRef
    Baird DJ, Soares AMVM, Girling A et al (1989) The long-term maintenance of Daphnia magna Straus for use in ecotoxicity test: problems and prospects. In: Lokke H, Tyle FB-R H (eds) Proceedings of the first European conference on ecotoxicology. Lyngby, Denmark, pp 144-48
    Borm P, Klaessig FC, Landry TD et al (2006) Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 90:23-2. doi:10.-093/?toxsci/?kfj084 CrossRef
    Briat J-F, Ravet K, Arnaud N et al (2010) New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants. Ann Bot 105:811-2. doi:10.-093/?aob/?mcp128 CrossRef
    Brown PH, Welch RM, Cary EE (1987) Nickel: a micronutrient essential for higher plants. Plant Physiol 85:801-03. doi:10.-104/?pp.-85.-.-01 CrossRef
    Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166-170CrossRef
    Dabrunz A, Duester L, Prasse C et al (2011) Biological surface coating and molting inhibition as mechanisms of TiO2 nanoparticle toxicity in daphnia magna. PLoS One 6, e20112. doi:10.-371/?journal.?pone.-020112 CrossRef
    Doak SH, Manshian B, Jenkins GJS, Singh N (2012) In vitro genotoxicity testing strategy for nanomaterials and the adaptation of current OECD guidelines. Mutat Res 745:104-1. doi:10.-016/?j.?mrgentox.-011.-9.-13 CrossRef
    Drost W, Matzke M, Backhaus T (2007) Heavy metal toxicity to Lemna minor: studies on the time dependence of growth inhibition and the recovery after exposure. Chemosphere 67:36-3. doi:10.-016/?j.?chemosphere.-006.-0.-18 CrossRef
    Dumon JC, Ernst WHO (1988) Titanium in plants. J Plant Physiol 133:203-09. doi:10.-016/?S0176-1617(88)80138-X CrossRef
    Eisler R (1998) Nickel hazards to fish, wildlife, and invertebrates: a synoptic review. US Geological Survey, Biological Resources Division, Biological Science Report USGS/BRD/BSR-998-001, pp 76
    Environmental A (1998) Microtox omnio manual. Carlsbad, CA, USA
    European Community (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. OJ of the European Communities, L 327, Luxembourg, 2000
    Farré M, Gajda-Schrantz K, Kantiani L, Barceló D (2009) Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal Bioanal Chem 393:81-5. doi:10.-007/?s00216-008-2458-1 CrossRef
    Fatta-Kassinos D, Kalavrouziotis IK, Koukoulakis PH, Vasquez MI (2011) The risks associated with wastewater reuse and xenobiotics in the agroecological environment. Sci Total Environ 409:3555-563. doi:10.-016/?j.?scitotenv.-010.-3.-36 CrossRef
    Finney DJ (1971) Probit analysis, 3rd edn. Cambridge University Press, Cambridge
    Fouqueray M, Dufils B, Vollat B et al (2012) Effects of aged TiO2 nanomaterial from sunscreen on Daphnia magna exposed by dietary route. Environ Pollut 163:55-1. doi:10.-016/?j.?envpol.-011.-1.-35 CrossRef
    García A, Espinosa R, Delgado L et al (2011) Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests. Desalination 269:136-41. doi:10.-016/?j.?desal.-010.-0.-52 CrossRef
    Geis S, Fleming K, Korthals E et al (2000) Modifications to the algal growth inhibition test for use as a regulatory assay. Environ Toxicol Chem 19:36-1CrossRef
    Geller W, Müller H (1981) The filtration apparatus of Cladocera: filter mesh-sizes and their implications on food selectivity. Oecologia 49:316-21. doi:10.-007/?bf00347591 CrossRef
    Gong N, Shao K, Feng W et al (2011) Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris. Chemosphere 83:510-16. doi:10.-016/?j.?chemosphere.-010.-2.-59 CrossRef
    Griffitt RJ, Luo J, Gao J et al (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27:1972-978. do
  • 作者单位:V. Nogueira (1) (2)
    I. Lopes (1) (2)
    T. A. P. Rocha-Santos (1) (3)
    M. G. Rasteiro (4)
    N. Abrantes (1) (5)
    F. Gon?alves (1) (2)
    A. M. V. M. Soares (1) (2)
    A. C. Duarte (1) (3)
    R. Pereira (6) (7)

    1. CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
    2. Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
    3. Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
    4. CIEPQPF - Department of Chemical Engineering, Faculty of Science and Technology, Polo II, University of Coimbra, 3030-290, Coimbra, Portugal
    5. Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
    6. Department of Biology, Faculty of Science, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
    7. Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Industrial Pollution Prevention
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1614-7499
文摘
The rapid development of nanotechnology and the increasing use of nanomaterials (NMs) raise concern about their fate and potential effects in the environment, especially for those that could be used for remediation purposes and that will be intentionally released to the environment. Despite the remarkable emerging literature addressing the biological effects of NMs to aquatic organisms, the existing information is still scarce and contradictory. Therefore, aimed at selecting NMs for the treatment of organic and inorganic effluents, we assessed the potential toxicity of NiO (100 and 10-0 nm), Fe2O3 (?5?×-25 nm), and TiO2 (<25 nm), to a battery of aquatic organisms: Vibrio fischeri, Raphidocelis subcapitata, Lemna minor, Daphnia magna, Brachionus plicatilis, and Artemia salina. Also a mutagenic test was performed with two Salmonella typhimurium strains. Suspensions of each NM, prepared with the different test media, were characterized by dynamic light scattering (DLS) and eletrophoretic light scattering (ELS). For the assays with marine species, no toxicity was observed for all the compounds. In opposite, statistically significant effects were produced on all freshwater species, being D. magna the most sensitive organism. Based on the results of this study, the tested NMs can be classified in a decreasing order of toxicity NiO (100 nm) > NiO (10-0 nm) > TiO2 (<25 nm) > Fe2O3, allowing to infer that apparently Fe2O3 NMs seems to be the one with less risks for receiving aquatic systems. Keywords Ecotoxicity Aquatic organisms Nanomaterials Sublethal and lethal effects Wastewater treatment
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.