An investigation on generalization ability of artificial neural networks and M5 model tree in modeling reference evapotranspiration
详细信息    查看全文
  • 作者:Ozgur Kisi ; Yasin Kilic
  • 刊名:Theoretical and Applied Climatology
  • 出版年:2016
  • 出版时间:November 2016
  • 年:2016
  • 卷:126
  • 期:3-4
  • 页码:413-425
  • 全文大小:1,724 KB
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Meteorology and Climatology
    Atmospheric Protection, Air Quality Control and Air Pollution
    Climate Change
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
  • 出版者:Springer Wien
  • ISSN:1434-4483
  • 卷排序:126
文摘
The generalization ability of artificial neural networks (ANNs) and M5 model tree (M5Tree) in modeling reference evapotranspiration (ET0) is investigated in this study. Daily climatic data, average temperature, solar radiation, wind speed, and relative humidity from six different stations operated by California Irrigation Management Information System (CIMIS) located in two different regions of the USA were used in the applications. King-City Oasis Rd., Arroyo Seco, and Salinas North stations are located in San Joaquin region, and San Luis Obispo, Santa Monica, and Santa Barbara stations are located in the Southern region. In the first part of the study, the ANN and M5Tree models were used for estimating ET0 of six stations and results were compared with the empirical methods. The ANN and M5Tree models were found to be better than the empirical models. In the second part of the study, the ANN and M5Tree models obtained from one station were tested using the data from the other two stations for each region. ANN models performed better than the CIMIS Penman, Hargreaves, Ritchie, and Turc models in two stations while the M5Tree models generally showed better accuracy than the corresponding empirical models in all stations. In the third part of the study, the ANN and M5Tree models were calibrated using three stations located in San Joaquin region and tested using the data from the other three stations located in the Southern region. Four-input ANN and M5Tree models performed better than the CIMIS Penman in only one station while the two-input ANN models were found to be better than the Hargreaves, Ritchie, and Turc models in two stations.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.