A minimum principle for contact forces in random packings of elastic frictionless particles
详细信息    查看全文
  • 作者:Hai Liu ; Shi-Hong Zhang ; Ming Cheng ; Hong-Wu Song ; Francesco Trentadue
  • 关键词:Complementary energy ; Granular matter ; Random packing ; Contact force distribution
  • 刊名:Granular Matter
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:17
  • 期:4
  • 页码:475-482
  • 全文大小:943 KB
  • 参考文献:1.Anikeenko, A.V., Medvedev, N.N., Aste, T.: Structural and entropic insights into the nature of the random-close-packing limit. Phys. Rev. E 77, 031101 (2008)ADS View Article
    2.Ammi, M., Bideau, D., Troadec, J.P.: Geometrical structure of disordered packings of regular polygons; comparison with disc packings structures. J. Phys. D 20, 424鈥?28 (1987)ADS View Article
    3.Antony, S.J.: Evolution of force distribution in three-dimensional granular media. Phys. Rev. E 63, 011302 (2000)ADS View Article
    4.Bagi, K.: Stress and strain in granular assemblies. Mech. Mater. 22, 165鈥?77 (1996)View Article
    5.Bernal, J.D., Mason, J.: Packing of spheres: co-ordination of randomly packed spheres. Nature 188, 910鈥?11 (1960)ADS View Article
    6.Blair, D.L., Mueggenburg, N.W., Marshall, A.H., Jaeger, H.M., Nagel, S.R.: Force distributions in three-dimensional granular assemblies: effects of packing order and interparticle friction. Phys. Rev. E 63, 041304 (2001)ADS View Article
    7.Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2009)
    8.Coppersmith, S.N., Liu, C., Majumdar, S., Narayan, O., Witten, T.A.: Model for force fluctuations in bead packs. Phys. Rev. E 53, 4673鈥?685 (1996)ADS View Article
    9.Desmond, K.W., Weeks, E.R.: Random close packing of disks and spheres in confined geometries. Phys. Rev. E 80, 051305 (2009)ADS View Article
    10.Gurtin, M.E.: The linear theory of elasticity. In: Truesdell, C. (ed) Linear Theories of Elasticity and Thermoelasticity, pp. 1鈥?95. Springer, Berlin (1973)
    11.Hicher, P.-Y., Chang, C.S.: A microstructural elastoplastic model for unsaturated granular materials. Int. J. Solids Struct. 44, 2304鈥?323 (2007)View Article MATH
    12.Howell, D., Behringer, R.P.: Stress fluctuations in a 2D granular couette experiment: a continuous transition. Phys. Rev. Lett. 82, 5241鈥?244 (1999)ADS View Article
    13.Jodrey, W.S., Tory, E.M.: Computer simulation of close random packing of equal spheres. Phys. Rev. A 32, 2347鈥?351 (1985)ADS View Article
    14.Kramar, M., Goullet, A., Kondic, L., Mischaikow, K.: Persistence of force networks in compressed granular meida. Phys. Rev. E 87, 042207 (2013)ADS View Article
    15.Liu, C., Nagel, S.R., Schecter, D.A., Coppersmith, S.N., Majumdar, S., Narayan, O., Witten, T.A.: Force fluctuations in bead packs. Science 269, 513鈥?15 (1995)ADS View Article
    16.Luding, S.: Stress distribution in static two-dimensional granular model media in the absence of friction. Phys. Rev. E 55, 4720鈥?729 (1997)ADS View Article
    17.Majmudar, T.S., Behringer, R.P.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435, 1079鈥?082 (2005)ADS View Article
    18.Makse, H.A., Johnson, D.L., Schwartz, L.M.: Packing of compressible granular materials. Phys. Rev. Lett. 84, 4160鈥?163 (2000)ADS View Article
    19.Miller, B., O鈥橦ern, C., Behringer, R.P.: Stress fluctuations for continuously sheared granular materials. Phys. Rev. Lett. 77, 3110鈥?113 (1996)ADS View Article
    20.Mueth, D.M., Jaeger, H.M., Nagel, S.R.: Force distribution in a granular medium. Phys. Rev. E 57, 3164鈥?169 (1998)ADS View Article
    21.Nemat-Nasser, S.: A micromechanically-based constitutive model for frictional deformation of granular materials. J. Mech. Phys. Solids 48, 1541鈥?563 (2000)MathSciNet ADS View Article MATH
    22.Nemat-Nasser, S., Zhang, J.H.: Constitutive relations for cohesionless frictional granular materials. Int. J. Plast. 18, 531鈥?47 (2002)View Article MATH
    23.Radjai, F., Jean, M., Moreau, J.J., Roux, S.: Force distributions in dense two-dimensional granular systems. Phys. Rev. Lett. 77, 274鈥?77 (1996)
    24.Saadatfar, M., Sheppard, A.P., Senden, T.J., Kabla, A.J.: Mapping forces in a 3D elastic assembly of grains. J. Mech. Phys. Solids 60, 55鈥?6 (2012)ADS View Article MATH
    25.Timoshenko, S., Goodier, J.N.: Theory of Elasticity. Mac Graw Hill, New York (1951)MATH
    26.Trentadue, F.: A micromechanical model for a non-linear elastic granular material based on local equilibrium conditions. Int. J. Solids Struct. 38, 7319鈥?342 (2001)View Article MATH
    27.Trentadue, F.: An equilibrium based approach for the micromechanical modelling of a non linear elastic granular material. Mech. Mater. 36, 323鈥?24 (2004)View Article
    28.Trentadue, F.: A rigid-plastic micromechanical modeling of a random packing of frictional particles. Int. J. Solids Struct. 48, 2529鈥?535 (2011)View Article
    29.Walsh, S.D.T., Tordesillas, A., Peters, J.F.: Development of micromechanical models for granular media鈥攖he projection problem. Granul. Matter 9, 337鈥?52 (2007)View Article MATH
    30.Yang, Z.X., Yang, J., Wang, L.Z.: Micro-scale modeling of anisotropy effects on undrained behavior of granular soils. Granul. Matter 15, 557鈥?72 (2013)View Article
    31.Zhou, J., Long, S., Wang, Q., Dinsmore, A.A.: Measurement of forces inside a three-dimensional pile of frictionless droplets. Science 312, 1631鈥?633 (2006)ADS View Article
  • 作者单位:Hai Liu (1)
    Shi-Hong Zhang (1)
    Ming Cheng (1)
    Hong-Wu Song (1)
    Francesco Trentadue (2)

    1. Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China
    2. DICAR, Politecnico di Bari, Via Orabona 4, Bari, Italy
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Granular Media
    Industrial Chemistry and Chemical Engineering
    Engineering Fluid Dynamics
    Structural Foundations and Hydraulic Engineering
    Engineering Thermodynamics and Transport Phenomena
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1434-7636
文摘
A minimum principle is developed with the aim of determining the contact forces in a random packing of hard frictionless particles. The principle is an extension of the minimum complementary energy principle to this particular non linear mechanical system. Under the assumptions that a convex complementary energy exists and that relative displacements between particles are small, it allows us to synthesize the generation mechanism of the force network from an energetic point of view and provides, besides the existing methods (e.g. Discrete Element Method), a new method to analyze the contact force distribution in discrete particle systems. Here the contact force network in a packing of identical elastic frictionless spheres with Hertz contacts is determined and it is shown that it is unique and independent both by the value of the applied load and by the value of elastic constants. Numerical examples confirm that the contact forces so determined are consistent with previous experimental results.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.