Improved coercivity and considerable saturation magnetization of cobalt ferrite (CoFe2O4) nanoribbons synthesized by electrospinning
详细信息    查看全文
  • 作者:Panpan Jing ; Jinlu Du ; Chendong Jin ; Jianbo Wang
  • 刊名:Journal of Materials Science
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:51
  • 期:2
  • 页码:885-892
  • 全文大小:1,688 KB
  • 参考文献:1.Maensiri S, Sangmanee M (2009) Nanostructures and magnetic properties of cobalt ferrite (CoFe2O4) fabricated by electrospinning. Appl Phys A 97:167鈥?77CrossRef
    2.Pirouzfar A, Seyyed Ebrahimi SA (2014) Optimization of sol鈥揼el synthesis of CoFe2O4 nanowires using template assisted vacuum suction method. J Magn Magn Mater 370:1鈥?CrossRef
    3.Mukherjee D, Devkota J, Ruiz A, Hordagoda M, Hyde R, Witanachchi S, Mukherjee P, Srikanth H, Phan MH (2014) Impacts of amorphous and crystalline cobalt ferrite layers on the giant magnetoimpedance response of a soft ferromagnetic amorphous ribbon. J Appl Phys 116:123912鈥?23920CrossRef
    4.Ballarini N, Cavani F, Passeri S, Pesaresi L, Lee AF, Wilson K (2009) Phenol methylation over nanoparticulate CoFe2O4 inverse spinel catalysts: the effect of morphology on catalytic performance. Appl Catal A 366:184鈥?92CrossRef
    5.Kim DH, Nikles DE, Johnson DT, Brazel CS (2008) Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia. J Magn Magn Mater 320:2390鈥?396CrossRef
    6.Fritsch D, Ederer C (2012) First-principles calculation of magnetoelastic coefficients and magnetostriction in the spinel ferrites CoFe2O4 and NiFe2O4. Phys Rev B 86:014406鈥?14416CrossRef
    7.Carlier D, Ansermet JP (2006) Electrochemical synthesis and magnetic properties of CoFe2O4 nanowire arrays. J Electrochem Soc 153:C277鈥揅281CrossRef
    8.Hua ZH, Chen RS, Li CL, Yang SG, Lu M, Gu BX, Du YW (2007) CoFe2O4 nanowire arrays prepared by template-electrodeposition method and further oxidization. J Alloy Compd 427:199鈥?03CrossRef
    9.Xu Y, Xue DS, Gao DQ, Fu JL, Fan XL, Guo DW, Gao B, Sui WB (2009) Ordered CoFe2O4 nanowire arrays with preferred crystal orientation and magnetic anisotropy. Electrochim Acta 54:5684鈥?687CrossRef
    10.Chen J, Wang Y, Deng Y (2013) Highly ordered CoFe2O4 nanowires array prepared via a modified sol鈥揼el templated approach and its optical and magnetic properties. J Alloy Compd 552:65鈥?9CrossRef
    11.Wang Z, Liu X, Lv M, Chai P, Liu Y, Meng J (2008) Preparation of ferrite MFe2O4 (M = Co, Ni) ribbons with nanoporous structure and their magnetic properties. J Phys Chem B 112:11292鈥?1297CrossRef
    12.Wang Z, Liu X, Lv M, Chai P, Liu Y, Meng J, Zhou X (2008) Preparation of one-dimensional CoFe2O4 nanostructures and their magnetic properties. J Phys Chem B 112:15171鈥?5175
    13.Ju YW, Park JH, Jung HR, Cho SJ, Lee WJ (2008) Fabrication and characterization of cobalt ferrite (CoFe2O4) nanofibers by electrospinning. Mater Sci Eng B 147:7鈥?2CrossRef
    14.Cheng Y, Zou B, Yang J, Wang C, Liu Y, Fan X, Zhu L, Wang Y, Ma H, Cao X (2011) Fabrication of CoFe2O4 hollow fibers by direct annealing of the electrospun composite fibers and their magnetic properties. CrystEngComm 13:2268鈥?272CrossRef
    15.Fu J, Zhang J, Peng Y, Zhao J, Tan G, Mellors NJ, Xie E, Han W (2012) Unique magnetic properties and magnetization reversal process of CoFe2O4 nanotubes fabricated by electrospinning. Nanoscale 4:3932鈥?936CrossRef
    16.Lu RE, Chang KG, Fu B, Shen YJ, Xu MW, Yang S, Song XP, Liu M, Yang YD (2014) Magnetic properties of different CoFe2O4 nanostructures: nanofibers versus nanoparticles. J Mater Chem C 2:8578鈥?584CrossRef
    17.Jia Z, Ren D, Zhu R (2012) Synthesis, characterization and magnetic properties of CoFe2O4 nanorods. Mater Lett 66:128鈥?31CrossRef
    18.Pervaiz E, Gul IH, Anwar H (2012) Hydrothermal synthesis and characterization of CoFe2O4 nanoparticles and nanorods. J Supercond Nov Magn 26:415鈥?24CrossRef
    19.Han R, Li W, Pan W, Zhu M, Zhou D, Li FS (2014) 1D magnetic materials of Fe3O4 and Fe with high performance of microwave absorption fabricated by electrospinning method. Sci Rep 4:7493鈥?498CrossRef
    20.Henry Y, Ounadjel K, Piraux L, Dubois S, George JM, Duvail JL (2001) Magnetic anisotropy and domain patterns in electrodeposited cobalt nanowires. Eur Phys J B 20:35鈥?4CrossRef
    21.Holzwarth U, Gibson N (2011) The Scherrer equation versus the 鈥楧ebye鈥揝cherrer equation鈥? Nature Nonotechnol 6:534CrossRef
    22.Li ZP, Fan YJ, Zhan JH (2010) In2O3 nanofibers and nanoribbons: preparation by electrospinning and their formaldehyde gas-sensing properties. Eur J Inorg Chem 21:3348鈥?353CrossRef
    23.Fan HT, Zhang T, Xu XJ, Lv N (2011) Fabrication of N-type Fe2O3 and P-type LaFeO3 nanobelts by electrospinning of gas-sensing properties. Sensor Actuat B 153:83鈥?8CrossRef
    24.Su YR, Lu BA, Xie YZ, Ma ZW, Liu LX, Zhao HT, Zhang J, Duan HG, Zhang HL, Li J, Xiong YQ, Xie EQ (2011) Temperature effect on electrospinning of nanobelts: the case of hafnium oxide. Nanotechnology 22:285609鈥?85614CrossRef
    25.Lu BA, Guo XS, Bao Z, Li XD, Liu YX, Zhu CQ, Wang YQ, Xie EQ (2011) Direct preparation of carbon nanotubes and nanobelts from polymer. Nanoscale 3:2145鈥?149CrossRef
    26.Lu BA, Zhu CQ, Zhang Z, Lan W, Xie EQ (2012) Preparation of highly porous TiO2 nanotubes and their catalytic applications. J Mater Chem 22:1375鈥?379CrossRef
    27.Fu JC, Zhang JL, Zhao CH, Peng Y, Li XD, He YM, Zhang ZX, Pan XJ, Mellors NJ, Xie EQ (2013) Solvent effect on electrospinnning of nanotubes: the case of magnesium ferrite. J Alloy Compd 577:97鈥?02CrossRef
    28.Garg K, Bowlin GL (2011) Electrospinning jets and nanofibrous structures. Biomicrofluidics 5:13403鈥?3421CrossRef
    29.Tsapis N, Dufresene ER, Sinha SS, Riera CS, Hutchinson JW, Mahadevan L, Weitz DA (2005) Onset of buckling in drying droplets of colloidal suspensions. Phy Rev Lett 94:018302鈥?18305CrossRef
    30.Ntallis N, Efthimiadis KG (2015) Size dependence of the magnetization reversal in a ferromagnetic particle. Comput Mater Sci 99:373鈥?80CrossRef
    31.Skomski R, Zeng H, Zheng M, Sellmyer DJ (2000) Magnetic localization in transition-metal nanowires. Phys Rev B 62:3900鈥?904CrossRef
    32.Li D, Li SJ, Zhou YT, Bai Y, Zhu YL, Ren WJ, Long G, Zeng H, Zhang ZD (2015) Magnetization reversal and coercivity of Fe3Se4 nanowire arrays. J Appl Phys 117:1770鈥?7705
    33.Skomski R (2003) Nanomagnetics. J Phys 15:R841鈥揜896
  • 作者单位:Panpan Jing (1)
    Jinlu Du (1)
    Chendong Jin (1)
    Jianbo Wang (1) (2)
    Lining Pan (1)
    Jianan Li (1)
    Qingfang Liu (1)

    1. Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou, 730000, People鈥檚 Republic of China
    2. Key Laboratory of Special Function Materials and Structure Design of the Ministry of Education, Lanzhou University, Lanzhou, 730000, People鈥檚 Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
Cobalt ferrite (CoFe2O4) nanoribbons with high crystallinity and purity were synthesized by annealing the as-spun PVP/[Co(NO3)2+Fe(NO3)3] precursor nanoribbons at temperatures from 450 to 750 掳C in air, and they were certified to have an improved coercivity (H c) and considerable saturation magnetization (M s). Although all the prepared CoFe2O4 nanoribbons presented an excellent ferromagnetism behavior at room temperature, their M s progressively increased with increasing annealing temperature but H c followed an opposite variation tendency. The maximum M s of about 80.3 emu g鈭? of the nanoribbons annealed at 750 掳C was basically equal to the bulk value, and the maximum H c of about 1802 Oe of the nanoribbons annealed at 450 掳C, is larger than most of reported H c values of other one-dimensional CoFe2O4 nanostructures by far. It suggested that the magnetization reverse processes of the CoFe2O4 nanoribbons annealed at 450 and 550 掳C were dominated by the coherent rotation model, while that of the CoFe2O4 nanoribbons annealed at 650 and 750 掳C were dominated by the growth of a reverse magnetic domain.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.