Solution structure of the parvulin-type PPIase domain of Staphylococcus aureus PrsA -Implications for the catalytic mechanism of parvulins
详细信息    查看全文
  • 作者:Outi Heikkinen (1)
    Raili Seppala (2)
    Helena Tossavainen (2)
    Sami Heikkinen (1)
    Harri Koskela (3)
    Perttu Permi (2)
    Ilkka Kilpel?inen (1)
  • 刊名:BMC Structural Biology
  • 出版年:2009
  • 出版时间:December 2009
  • 年:2009
  • 卷:9
  • 期:1
  • 全文大小:3133KB
  • 参考文献:1. Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H, Kobayashi I, Cui L, Oguchi A, Aoki K, Nagai Y, Lian J, Ito T, Kanamori M, Matsumaru H, Maruyama A, Murakami H, Hosoyama A, Mizutani-Ui Y, Takahashi NK, Sawano T, Inoue R, Kaito C, Sekimizu K, Hirakawa H, Kuhara S, Goto S, Yabuzaki J, Kanehisa M, Yamashita A, Oshima K, Furuya K, Yoshino C, Shiba T, Hattori M, Ogasawara N, Hayashi H, Hiramatsu K: Whole genome sequencing of meticillin-resistant Staphylococcus aureus . / Lancet 2001, 357:1225-240. CrossRef
    2. Vitikainen M, Lappalainen I, Seppala R, Antelmann H, Boer H, Taira S, Savilahti H, Hecker M, Vihinen M, Sarvas M, Kontinen VP: Structure-function analysis of PrsA reveals roles for the parvulin-like and flanking N- and C-terminal domains in protein folding and secretion in Bacillus subtilis . / J Biol Chem 2004, 279:19302-9314. CrossRef
    3. Sarvas M, Harwood CR, Bron S, van Dijl JM: Post-translocational folding of secretory proteins in Gram-positive bacteria. / Biochim Biophys Acta 2004, 1694:311-27.
    4. Fangh?nel J, Fischer G: Insights into the catalytic mechanism of peptidyl prolyl cis/trans isomerases. / Front Biosci 2004, 9:3453-478. CrossRef
    5. Ranganathan R, Lu KP, Hunter T, Noel JP: Structural and functional analysis of the mitotic rotamase Pin1 suggests substrate recognition is phosphorylation dependent. / Cell 1997, 89:875-86. CrossRef
    6. Bayer E, Goettsch S, Mueller JW, Griewel B, Guiberman E, Mayr LM, Bayer P: Structural analysis of the mitotic regulator hPin1 in solution. Insights into domain architecture and substrate binding. / J Biol Chem 2003, 278:26183-6193. CrossRef
    7. Sekerina E, Rahfeld JU, Muller J, Fanghanel J, Rascher C, Fischer G, Bayer P: NMR solution structure of hPar14 reveals similarity to the peptidyl prolyl cis/trans isomerase domain of the mitotic regulator hPin1 but indicates a different functionality of the protein. / J Mol Biol 2000, 301:1003-017. CrossRef
    8. Landrieu I, Wieruszeski JM, Wintjens R, Inze D, Lippens G: Solution structure of the single-domain prolyl cis/trans isomerase PIN1At from Arabidopsis thaliana . / J Mol Biol 2002, 320:321-32. CrossRef
    9. Kuehlewein A, Voll G, Alvarez BH, Kessler H, Fischer G, Rahfeld JU, Gemmecker G: Solution structure of Escherichia coli Par10: The prototypic member of the Parvulin family of peptidyl-prolyl cis/trans isomerases. / Protein Sci 2004, 13:2378-387. CrossRef
    10. Bitto E, McKay DB: Crystallographic structure of SurA, a molecular chaperone that facilitates folding of outer membrane porins. / Structure 2002, 10:1489-498. CrossRef
    11. Li Z, Li H, Devasahayam G, Gemmill T, Chaturvedi V, Hanes SD, Van Roey P: The structure of the Candida albicans Ess1 prolyl isomerase reveals a well-ordered linker that restricts domain mobility. / Biochemistry 2005, 44:6180-189. CrossRef
    12. Tossavainen H, Permi P, Purhonen SL, Sarvas M, Kilpel?inen I, Seppala R: NMR solution structure and characterization of substrate binding site of the PPIase domain of PrsA protein from Bacillus subtilis . / FEBS Lett 2006, 580:1822-826. CrossRef
    13. Hodak H, Wohlk?nig A, Smet-Nocca C, Drobecq H, Wieruszeski JM, Sénéchal M, Landrieu I, Locht C, Jamin M, Jacob-Dubuisson F: The peptidyl-prolyl isomerase and chaperone Par27 of Bordetella pertussis as the prototype for a new group of parvulins. / J Mol Biol 2008, 376:414-26. CrossRef
    14. Herrmann T, Güntert P, Wüthrich K: Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. / J Mol Biol 2002, 319:209-27. CrossRef
    15. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Wang B, Pearlman DA, Crowley M, Brozell S, Tsui V, Gohlke H, Mongan J, Hornak V, Cui G, Beroza P, Schafmeister C, Caldwell JW, Ross WS, Kollman PA: AMBER 8. University of California, San Francisco, CA 2004.
    16. Laskowski RA, Rullmann JAC, MacArthur MW, Kaptein R, Thornton JM: AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. / J Biomol NMR 1996, 8:477-86. CrossRef
    17. Hooft RWW, Vriend G, Sander C, Abola EE: Errors in protein structures. / Nature 1996, 381:272-72. CrossRef
    18. Shimba N, Takahashi H, Sakakura M, Fujii I, Shimada I: Determination of protonation and deprotonation and tautomeric states of histidine residues in large proteins using nitrogen-carbon J couplings in imidazole ring. / J Am Chem Soc 1998, 120:10988-0989. CrossRef
    19. Sudmeier JL, Bradshaw M, Coffman Haddad KE, Day RM, Thalhauser CJ, Bullock PA, Bachovchin WW: Identification of histidine tautomers in proteins by 2D 1 H/ 13 C δ2 one-bond correlated NMR. / J Am Chem Soc 2003, 125:8430-431. CrossRef
    20. Rahfeld J-U, Schierhornb A, Mannc K, Fischer G: A novel peptidyl-prolyl cis/trans isomerase from Escherichia coli . / FEBS Lett 1994, 343:65-9. CrossRef
    21. Behrsin CD, Bailey ML, Bateman KS, Hamilton KS, Wahl LM, Brandl CJ, Shilton BH, Litchfield DW: Functionally important residues in the peptidyl-prolyl isomerase Pin1 revealed by unigenic evolution. / J Mol Biol 2007, 365:1143-162. CrossRef
    22. Lippens G, Landrieu I, Smet C: Molecular mechanisms of the phospho-dependent prolyl cis/trans isomerase Pin1. / FEBS J 2007, 274:5211-222. CrossRef
    23. Bailey ML, Shilton BH, Brandl CJ, Litchfield DW: The dual histidine motif in the active site of Pin1 has a structural rather than catalytic role. / Biochemistry 2008, 47:11481-1489. CrossRef
    24. Holm L, Sander C: Protein structure comparison by alignment of distance matrices. / J Mol Biol 1993, 233:123-38. CrossRef
    25. Blow DM, Birktoft J, Hartley BS: Role of a buried acid group in the mechanism of action of chymotrypsin. / Nature 1969, 221:337-40. CrossRef
    26. Fischer G, Bang H, Ludwig B, Mann K, Hacker J: Mip protein of Legionella pneumophila exhibits peptidyl-prolyl-cis/trans isomerase (PPlase) activity. / Mol Microbiol 1992, 6:1375-383. CrossRef
    27. Permi P: Intraresidual HNCA: An experiment for correlating only intraresidual backbone resonances. / J Biomol NMR 2002, 23:201-09. CrossRef
    28. Sattler M, Schleucher J, Griesinger C: Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. / Prog Nucl Magn Res Spectros 1999, 34:93-58. CrossRef
    29. Permi P, Annila A: Coherence transfer in proteins. / Prog Nucl Magn Res Spectros 2004, 44:97-37. CrossRef
    30. Yamazaki T, Forman-Kay JD, Kay LE: Two-dimensional NMR experiments for correlating 13 Cβ and 1 Hδ/ε chemical shifts of aromatic residues in 13 C-labeled proteins via scalar couplings. / J Am Chem Soc 1993, 115:11054-1055. CrossRef
    31. Goddard TD, Kneller DG: Sparky 3. University of California, San Francisco, CA 2004.
    32. Cornilescu G, Delaglio F, Bax A: Protein backbone angle restraints from searching a database for chemical shift and sequence homology. / J Biomol NMR 1999, 13:289-02. CrossRef
    33. Koradi R, Billeter M, Wüthrich K: MOLMOL: A program for display and analysis of macromolecular structures. / J Mol Graph 1996, 14:51-5. CrossRef
    34. DeLano WL: The PyMOL Molecular Graphics System. DeLano Scientific, Palo Alto, CA, USA 2002.
    35. Heikkinen S, Kilpel?inen I: Linewidth-resolved 15 N HSQC, a simple 3D method to measure 15 N relaxation times from T 1 and T 2 linewidths. / J Magn Reson 2001, 151:314-19. CrossRef
    36. Koskela H, Kilpel?inen I, Heikkinen S: Evaluation of protein 15 N relaxation times by inverse Laplace transformation. / Magn Reson Chem 2004, 42:61-5. CrossRef
    37. Farrow NA, Muhandiram R, Singer AU, Pascal SM, Kay CM, Gish G, Shoelson SE, Pawson T, Forman-Kay JD, Kay LE: Backbone dynamics of a free and a phosphopeptide-complexed Src homology 2 domain studied by 15 N NMR relaxation. / Biochemistry 1994, 33:5984-003. CrossRef
    38. Mandel AM, Akke M, Palmer AG: Backbone dynamics of Escherichia coli ribonuclease HI: Correlations with structure and function in an active enzyme. / J Mol Biol 1995, 246:144-63. CrossRef
    39. Palmer AG, Rance M, Wright PE: Intramolecular motions of a zinc finger DNA-binding domain from Xfin characterized by proton-detected natural abundance 13 C heteronuclear NMR spectroscopy. / J Am Chem Soc 1991, 113:4371-380. CrossRef
    40. Cole R, Loria JP: FAST-Modelfree: a program for rapid automated analysis of solution NMR spin-relaxation data. / J Biomol NMR 2003, 26:203-13. CrossRef
    41. Koskela H, Heikkinen O, Kilpel?inen I, Heikkinen S: Rapid and accurate processing method for amide proton exchange rate measurement in proteins. / J Biomol NMR 2007, 37:313-20. CrossRef
  • 作者单位:Outi Heikkinen (1)
    Raili Seppala (2)
    Helena Tossavainen (2)
    Sami Heikkinen (1)
    Harri Koskela (3)
    Perttu Permi (2)
    Ilkka Kilpel?inen (1)

    1. Laboratory of Organic Chemistry, Department of Chemistry, P.O. Box 55, FI-00014 University of Helsinki, Finland
    2. Program in Structural Biology and Biophysics, Institute of Biotechnology, P.O. Box 65, FI-00014, University of Helsinki, Finland
    3. Finnish Institute for Verification of the Chemical Weapons Convention, P.O. Box 55, FI-00014, University of Helsinki, Finland
  • ISSN:1472-6807
文摘
Background Staphylococcus aureus is a Gram-positive pathogenic bacterium causing many kinds of infections from mild respiratory tract infections to life-threatening states as sepsis. Recent emergence of S. aureus strains resistant to numerous antibiotics has created a need for new antimicrobial agents and novel drug targets. S. aureus PrsA is a membrane associated extra-cytoplasmic lipoprotein which contains a parvulin-type peptidyl-prolyl cis-trans isomerase domain. PrsA is known to act as an essential folding factor for secreted proteins in Gram-positive bacteria and thus it is a potential target for antimicrobial drugs against S. aureus. Results We have solved a high-resolution solution structure of the parvulin-type peptidyl-prolyl cis-trans isomerase domain of S. aureus PrsA (PrsA-PPIase). The results of substrate peptide titrations pinpoint the active site and demonstrate the substrate preference of the enzyme. With detailed NMR spectroscopic investigation of the orientation and tautomeric state of the active site histidines we are able to give further insight into the structure of the catalytic site. NMR relaxation analysis gives information on the dynamic behaviour of PrsA-PPIase. Conclusion Detailed structural description of the S. aureus PrsA-PPIase lays the foundation for structure-based design of enzyme inhibitors. The structure resembles hPin1-type parvulins both structurally and regarding substrate preference. Even though a wealth of structural data is available on parvulins, the catalytic mechanism has yet to be resolved. The structure of S. aureus PrsA-PPIase and our findings on the role of the conserved active site histidines help in designing further experiments to solve the detailed catalytic mechanism.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.