Identification and comparative analysis of sixteen fungal peptidyl-prolyl cis/trans isomerase repertoires
详细信息    查看全文
  • 作者:Trevor J Pemberton (1)
  • 刊名:BMC Genomics
  • 出版年:2006
  • 出版时间:December 2006
  • 年:2006
  • 卷:7
  • 期:1
  • 全文大小:1183KB
  • 参考文献:1. Adams B, Musiyenko A, Kumar R, Barik S: A Novel Class of Dual-family Immunophilins. / J Biol Chem 2005,280(26):24308鈥?4314. CrossRef
    2. Galat A: Peptidyl proline cis-trans-isomerases: immunophilins. / Eur J Biochem 1993,216(3):689鈥?07. CrossRef
    3. Galat A, Metcalfe SM: Peptidyl proline cis/trans isomerases. / Progress Biophys Mol Biol 1995,63(1):67鈥?18. CrossRef
    4. Galat A: Variations of sequences and amino acid compositions of proteins that sustain their biological functions: An analysis of the cyclophilin family of proteins. / Arch Biochem Biophys 1999,371(2):149鈥?62. CrossRef
    5. Rulten S, Thorpe J, Kay J: Identification of eukaryotic parvulin homologues: a new subfamily of peptidylprolyl cis-trans isomerases. / Biochem Biophys Res Comm 1999,259(3):557鈥?62. CrossRef
    6. Maruyama T, Furuani M: Archael Peptidyl-Prolyl cis/trans Isomerases (PPIases). / Front Biosci 2000, 5:821鈥?36. CrossRef
    7. Ivery MTG: Immunophillins: Switched on Protein Binding Domains. / Med Res Rev 2000,20(6):452鈥?84. CrossRef
    8. He Z, Li L, Luan S: Immunophilins and Parvulins. Superfamily of Peptidyl Prolyl Isomerases in Arabidopsis. / Plant Physiol 2004,134(4):1248鈥?267. CrossRef
    9. Kumar A, Agarwal S, Heyman JA, Matson S, Heidtman M, Piccirillo S, Umansky L, Drawid A, Jansen R, Liu Y, Cheung KH, Miller P, Gerstein M, Roeder GS, Snyder M: Subcellular localization of the yeast proteome. / Genes Dev 2002,16(6):707鈥?19. CrossRef
    10. Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O'Shea EK: Global analysis of protein localization in budding yeast. / Nature 2003, 425:686鈥?91. CrossRef
    11. Pemberton TJ, Kay JE: The Cyclophilin repertoire of the fission yeast Schizosaccharomyces pombe. / Yeast 2005,22(12):927鈥?45. CrossRef
    12. Justice SS, Hunstad DA, Harper JR, Duguay AR, Pinkner JS, Bann J, Frieden C, Silhavy TJ, Hultgren SJ: Periplasmic Peptidyl Prolyl cis-trans Isomerases Are Not Essential for Viability, but SurA Is Required for Pilus Biogenesis in Escherichia coli. / J Bacteriol 2005,187(22):7680鈥?686. CrossRef
    13. Gothel SF, Scholz C, Schmid FX, Marahiel MA: Cyclophilin and trigger factor from Bacillus subtilis catalyze in vitro protein folding and are necessary for viability under starvation conditions. / Biochemistry 1998,37(38):13392鈥?3399. CrossRef
    14. Dolinski K, Muir S, Cardenas M, Heitman J: All cyclophilins and FK506 binding proteins are, individually and collectively, dispensable for viability in Saccharomyces cerevisiae. / Proc Nat Acad Sci USA 1997,94(24):13093鈥?3098. CrossRef
    15. Hemenway C, Heitman J: Proline Isomerases in Microorganisms and small Eukaryotes. / Ann NY Acad Sci 1993, 696:38鈥?6. CrossRef
    16. Hanes SD, Shank PR, Bostian KA: Sequence and mutational analysis of ESS1, a gene essential for growth in Saccharomyces cerevisiae. / Yeast 1989,5(1):55鈥?2. CrossRef
    17. Gemmill TR, Wu X, Hanes SD: Vanishingly Low Levels of Ess1 Prolyl-isomerase Activity Are Sufficient for Growth in Saccharomyces cerevisiae. / J Biol Chem 2005,280(16):15510鈥?5517. CrossRef
    18. Devasahayam G, Chaturvedi V, Hanes SD: The Ess1 Prolyl Isomerase Is Required for Growth and Morphogenetic Switching in Candida albicans. / Genetics 2002,160(1):37鈥?8.
    19. Huang HK, Forsburg SL, John UP, O'Connell MJ, Hunter T: Isolation and characterization of the Pin1/Ess1p homologue in Schizosaccharomyces pombe. / J Cell Sci 2001,114(20):3779鈥?788.
    20. Ren P, Rossettini A, Chaturvedi V, Hanes SD: The Ess1 prolyl isomerase is dispensable for growth but required for virulence in Cryptococcus neoformans. / Microbiology 2005,151(5):1593鈥?605. CrossRef
    21. Maleszka R, Hanes SD, Hackett RL, de Couet HG, Miklos GLG: The Drosophila melanogaster dodo (dod) gene, conserved in humans, is functionally interchangeable with the ESS1 cell division gene of Saccharomyces cerevisiae. / Proc Nat Acad Sci USA 1996,93(1):447鈥?51. CrossRef
    22. Edgar KA, Belvin M, Parks AL, Whittaker K, Mahoney MB, Nicoll M, Park CC, Winter CG, Chen F, Lickteig K, Ahmad F, Esengil H, Lorenzi MV, Norton A, Rupnow BA, Shayesteh L, Tabios M, Young LM, Carroll PM, Kopczynski C, Plowman GD, Friedman LS, Francis-Lang HL: Synthetic lethality of retinoblastoma mutant cells in the Drosophila eye by mutation of a novel peptidyl prolyl isomerase gene. / Genetics 2005,170(1):161鈥?71. CrossRef
    23. Fujimori F, Takahashi K, Uchida C, Uchida T: Mice Lacking Pin1 Develop Normally, but Are Defective in Entering Cell Cycle from G0 Arrest. / Biochem Biophys Res Comm 1999,265(3):658鈥?63. CrossRef
    24. Colgan J, Asmal M, Yu B, Luban J: Cyclophilin A-Deficient Mice Are Resistant to Immunosuppression by Cyclosporine. / J Immunol 2005,174(10):6030鈥?038.
    25. Shou W, Aghdasi B, Armstrong DL, Guo Q, Bao S, Charng MJ, Mathews LM, Schneider MD, Hamilton SL, Matzuk MM: Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12. / Nature 1998, 391:489鈥?92. CrossRef
    26. Xin HB, Senbonmatsu T, Cheng DS, Wang YX, Copello JA, Ji GJ, Collier ML, Deng KY, Jeyakumar LH, Magnuson MA, Inagami T, Kotlikoff MI, Fleischer S: Oestrogen protects FKBP12.6 null mice from cardiac hypertrophy. / Nature 2002,416(6878):334. CrossRef
    27. Cheung-Flynn J, Prapapanich V, Cox MB, Riggs DL, Suarez-Quian C, Smith DF: Physiological Role for the Cochaperone FKBP52 in Androgen Receptor Signaling. / Mol Endocrinol 2005,19(6):1654鈥?666. CrossRef
    28. Liou YC, Sun A, Ryo A, Zhou XZ, Yu ZX, Huang HK, Uchida T, Bronson R, Bing G, Li X, Hunter T, Lu KP: Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. / Nature 2003,424(6948):556. CrossRef
    29. Liou YC, Ryo A, Huang HK, Lu PJ, Bronson R, Fujimori F, Uchida T, Hunter T, Lu KP: Loss of Pin1 function in the mouse causes phenotypes resembling cyclin D1-null phenotypes. / Proc Nat Acad Sci USA 2002,99(3):1335鈥?340. CrossRef
    30. Ibrahim AS, Spellberg B, Avanessian V, Fu Y, Edwards JEJ: Rhizopus oryzae adheres to, is phagocytosed by, and damages endothelial cells in vitro. / Infect Immun 2005,73(2):778鈥?83. CrossRef
    31. Wilson JM: The biology of Encephalitozoon cuniculi. / Med Biol 1979,57(2):84鈥?01.
    32. Kumamoto CA, Vinces MD: Alternative Candida albicans lifestyles: Growth on Surfaces. / Ann Rev Microbiol 2005,59(1):113鈥?33. CrossRef
    33. Hazen KC: New and emerging yeast pathogens. / Clin Microbiol Rev 1995,8(4):462鈥?78.
    34. Marr KA, Patterson T, Denning D: Aspergillosis. Pathogenesis, clinical manifestations, and therapy. / Infect Dis Clin North Am 2002,16(4):875鈥?94. CrossRef
    35. Perfect JR, Casadevall A: Cryptococcosis. / Infect Dis Clin North Am 2002,16(4):837鈥?74. CrossRef
    36. Gold SE, Garcia-Pedrajas MD, Martinez-Espinoza AD: New (and used) approaches to the study of fungal pathogeniCity. / Annu Rev Phytopathol 2001, 39:337鈥?65. CrossRef
    37. Desjardins AE: Gibberella from A (Venaceae) to Z (eae). / Ann Rev Phytopathol 2003,41(1):177鈥?98. CrossRef
    38. Feldbrugge M, Kamper J, Steinberg G, Kahmann R: Regulation of mating and pathogenic development in Ustilago maydis. / Curr Op Microbiol 2004,7(6):666鈥?72. CrossRef
    39. Cianciotto NP, Fields BS: Legionella pneumophila mip Gene Potentiates Intracellular Infection of Protozoa and Human Macrophages. / Proc Nat Acad Sci USA 1992,89(11):5188鈥?191. CrossRef
    40. Helbig JH, Konig B, Knospe H, Bubert B, Yu C, Luck CP, Riboldi-Tunnicliffe A, Hilgenfeld R, Jacobs E, Hacker J, Fischer G: The PPIase active site of Legionella pneumophila Mip protein is involved in the infection of eukaryotic host cells. / Biol Chem 2003,384(1):125鈥?37. CrossRef
    41. Lundemose AG, Kay JE, Pearce JH: Chlamydia trachomatis Mip-like protein has peptidyl-prolyl cis/trans isomerase activity that is inhibited by FK506 and rapamycin and is implicated in initiation of chlamydial infection. / Mol Microbiol 1993,7(5):777鈥?83. CrossRef
    42. Denkers EY, Butcher BA, Del Rio L, Bennouna S: Neutrophils, dendritic cells and Toxoplasma. / Int J Parasitol 2004,34(3):411鈥?21. CrossRef
    43. Denkers EY: From cells to signaling cascades: manipulation of innate immunity by Toxoplasma gondii. / FEMS Immunol Med Microbiol 2003,39(3):193鈥?03. CrossRef
    44. Viaud MC, Balhadere PV, Talbot NJ: A Magnapothe grisea Cyclophilin Acts as a Virulence Determinant during Plant Infection. / Plant Cell 2002, 14:917鈥?30. CrossRef
    45. Viaud M, Brunet-Simon A, Brygoo Y, Pradier JM, Levis C: Cyclophilin A and calcineurin functions investigated by gene inactivation, cyclosporin A inhibition and cDNA arrays approaches in the phytopathogenic fungus Botrytis cinerea. / Mol Microbiol 2003,50(5):1451鈥?465. CrossRef
    46. Wang P, Cardenas ME, Cox GM, Perfect JR, Heitman J: Two cyclophilin A homologs with shared and distinct functions important for growth and virulence of Cryptococcus neoformans. / EMBO Rep 2001,2(6):511鈥?18.
    47. Harding MW, Handschumacher RE, Speicher DW: Isolation and amino acid sequence of cyclophilin. / J Biol Chem 1986,261(18):8547鈥?555.
    48. Handschumacher RE, Harding MW, Rice J, Drugge RJ, Speicher DW: Cyclophilin: a specific cytosolic binding protein for cyclosporin A. / Science 1984, 226:544鈥?47. CrossRef
    49. Arevalo-Rodriguez M, Heitman J: Cyclophilin A Is Localized to the Nucleus and Controls Meiosis in Saccharomyces cerevisiae. / Euk Cell 2005,4(1):17鈥?9. CrossRef
    50. Tropschug M, Nicholson DW, Hartl FU, Kohler H, Pfanner N, Wachter E, Neupert W: Cyclosporin A-binding protein (cyclophilin) of Neurospora crassa. One gene codes for both the cytosolic and mitochondrial forms. / J Biol Chem 1988,263(28):14433鈥?4440.
    51. Ansari H, Greco G, Luban J: Cyclophilin A Peptidyl-Prolyl Isomerase Activity Promotes Zpr1 Nuclear Export. / Mol Cell Biol 2002,22(20):6993鈥?003. CrossRef
    52. Pijnappel WWMP, Schaft D, Roguev A, Shevchenko A, Tekotte H, Wilm M, Rigaut G, Seraphin B, Aasland R, Stewart AF: The S. cerevisiae SET3 complex includes two histone deacetylases, Hos2 and Hst1, and is a meiotic-specific repressor of the sporulation gene program. / Genes Dev 2001,15(22):2991鈥?004. CrossRef
    53. Arevalo-Rodriguez M, Cardenas ME, Wu X, Hanes SD, Heitman J: Cyclophilin A and Ess1 interact with and regulate silencing by the Sin3-Rpd3 histone deacetylase. / EMBO J 2000,19(14):3739鈥?749. CrossRef
    54. Brown CR, Cui DY, Hung GGC, Chiang HL: Cyclophilin A Mediates Vid22p Function in the Import of Fructose-1,6-bisphosphatase into Vid Vesicles. / J Biol Chem 2001,276(51):48017鈥?8026.
    55. Fujimori F, Gunji W, Kikuchi J, Mogi T, Ohashi Y, Makino T, Oyama A, Okuhara K, Uchida T, Murakami Y: Crosstalk of Prolyl Isomerases, Pin1/ESS1, and Cyclophilin A. / Biochem Biophys Res Comm 2001, 289:181鈥?90. CrossRef
    56. Frigerio G, Pelham HRB: A Saccharomyces cerevisiae Cyclophilin Resident in the Endoplasmic Reticulum. / J Mol Biol 1993,233(1):183鈥?88. CrossRef
    57. Joseph JD, Heitman J, Means AR: Molecular Cloning and Characterization of Aspergillus nidulans Cyclophilin B. / Fungal Genet Biol 1999,27(1):55鈥?6. CrossRef
    58. Koser PL, Bergsma DJ, Cafferkey R, Eng WK, McLaughlin MM, Ferrara A, Silverman C, Kasyan K, Bossard MJ, Johnson RK: The CYP2 gene of Saccharomyces cerevisiae encodes a cyclosporin A-sensitive peptidyl-prolyl cis-trans isomerase with an N-terminal signal sequence. / Gene 1991,108(1):73鈥?0. CrossRef
    59. Gothel SF, Marahiel MA: Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. / Cell Mol Life Sci 1999,55(3):423鈥?36. CrossRef
    60. Weisman R, Creanor J, Fantes P: A multicopy suppressor of a cell cycle defect in S. pombe encodes a heat shock inducible 40 kDa cyclophilin-like protein. / EMBO J 1996,15(3):447鈥?56.
    61. Mayr C, Richter K, Lilie H, Buchner J: Cpr6 and Cpr7, two closely related HSP90-associated Immunophilins from Saccharomyces cerevisiae, differ in their functional properties. / J Biol Chem 2000,275(44):34140鈥?4146. CrossRef
    62. Faou P, Tropschug M: A Novel Binding Protein for a Member of CyP40-type Cyclophilins: N. crassa CyPBP37, a Growth and Thiamine Regulated Protein Homolog to Yeast Thi4p. / J Mol Biol 2003,333(4):831鈥?44. CrossRef
    63. Sykes K, Gething MJ, Sambrook J: Proline isomerases function during heat shock. / Proc Nat Acad Sci USA 1993, 90:5853鈥?857. CrossRef
    64. Duina AA, Kalton HM, Gaber RF: Requirement for Hsp90 and a CyP-40-type cyclophilin in negative regulation of the Heat Shock Response. / J Biol Chem 1998,273(30):18974鈥?8978. CrossRef
    65. Prodromou C, Siligardi G, O'Brien R, Woolfson DN, Regan L, Panaretou B, Ladbury JE, Piper PW, Pearl LH: Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones. / EMBO J 1999,18(3):754鈥?62. CrossRef
    66. Warth R, Briand PA, Picard D: Functional analysis of the yeast 40 kDa cyclophilin Cyp40 and its role for viability and steroid receptor regulation. / Biol Chem 1997,378(5):381鈥?91. CrossRef
    67. Goes FS, Martin J: Hsp90 chaparone complexes are required for the activity and stability of yeast protein kinases Mik1, Wee1 and Swe1. / Eur J Biochem 2001,268(8):2281鈥?289. CrossRef
    68. Pemberton TJ, Kay JE: Identification and comparative analysis of the peptidyl-prolyl cis/trans isomerase repertoires of H. Sapiens, D. melanogaster, C. elegans, S. cerevisiae & Sz. pombe. / Comp Funct Genom 2005,6(5鈥?):277鈥?00. CrossRef
    69. Ohi MD, Link AJ, Ren L, Jennings JL, McDonald WH, Gould KL: Proteomics analysis reveals stable multiprotein complexes in both Fission and Budding yeasts containing Myb-related Cdc5p/Cef1p, novel pre-mRNA splicing factors, and snRNAs. / Mol Cell Biol 2002,22(7):2011鈥?024. CrossRef
    70. McDonald WH, Ohi R, Smelkova N, Frendewey D, Gould KL: Myb-Related Fission Yeast cdc5p Is a Component of a 40S snRNP-Containing Complex and Is Essential for Pre-mRNA Splicing. / Mol Cell Biol 1999,19(8):5352鈥?362.
    71. Pemberton TJ, Rulten SL, Kay JE: Cloning and Characterisation of Schizosaccharomyces pombe Cyclophilin 3: a Cyclosporin A insensitive orthologue of human USA-CyP. / J Chrom B 2003,786(1):81鈥?1. CrossRef
    72. Neer EJ, Schmidt CJ, Nambudripad R, Smith TF: The ancient regulatory-protein family of WD-repeat proteins. / Nature 1994, 371:297鈥?00. CrossRef
    73. Birney E, Kumar S, Krainer AR: Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors. / Nuc Acids Res 1993,21(25):5803鈥?816. CrossRef
    74. Krzywicka A, Beisson J, Keller AM, Cohen J, Jerka-Dziadosz M, Klotz C: KIN241: a gene involved in cell morphogenesis in Paramecium tetraurelia reveals a novel protein family of cyclophilin-RNA interacting proteins (CRIPs) conserved from fission yeast to man. / Mol Microbiol 2001,42(1):257鈥?67. CrossRef
    75. Pringa E, Martinez-Noel G, Muller U, Harbers K: Interaction of the Ring-finger related U-box motif of a nuclear Dot protein with ubiquitin-conjugating enzymes. / J Biol Chem 2001,276(22):19617鈥?9623. CrossRef
    76. Dolinski K, Scholz C, Muir RS, Rospert S, Schmid FX, Cardenas ME, Heitman J: Functions of FKBP12 and Mitochondrial Cyclophilin Active Site Residues In Vitro and In Vivo in Saccharomyces cerevisiae. / Mol Biol Cell 1997,8(11):2267鈥?280.
    77. Matouschek A, Rospert S, Schmid K, Glick BS, Schatz G: Cyclophilin Catalyzes Protein Folding in Yeast Mitochondria. / Proc Nat Acad Sci USA 1995,92(14):6319鈥?323. CrossRef
    78. Davis ES, Becker A, Heitman J, Hall MN, Brennan MB: A yeast cyclophilin gene essential for lactate metabolism at high temperature. / Proc Nat Acad Sci USA 1992,89(23):11169鈥?1173. CrossRef
    79. Rassow J, Mohrs K, Koidl S, Barthelmess IB, Pfanner N, Tropschug M: Cyclophilin 20 is involved in mitochondrial protein folding in cooperation with molecular chaperones Hsp70 and Hsp60. / Mol Cell Biol 1995,15(5):2654鈥?662.
    80. Brustovetsky N, Tropschug M, Heimpel S, Heidkamper D, Klingenberg M: A large Ca2+-dependent channel formed by recombinant ADP/ATP carrier from Neurospora crassa resembles the mitochondrial permeability transition pore. / Biochemistry 2002,41(39):11804鈥?1811. CrossRef
    81. Skruzny M, Ambrozkova M, Fukova K, Martinkova K, Blahuskova A, Hamplova L, Puta F, Folk P: Cyclophilins of a novel subfamily interact with SNW/SKIP coregulator in Dictyostelium discoideum and Schizosaccharomyces pombe. / Biocheim Biophys Acta 2001, 1521:146鈥?51.
    82. Marsh JA, Kalton HM, Gaber RF: Cns1 Is an Essential Protein Associated with the Hsp90 Chaperone Complex in Saccharomyces cerevisiae That Can Restore Cyclophilin 40-Dependant Functions in Cpr7 Deletion Cells. / Mol Cell Biol 1998,18(12):7353鈥?359.
    83. Tesic M, Marsh JA, Cullinan SB, Gaber RF: Functional interactions between Hsp90 and the Co-chaperones Cns1 and Cpr7 in Saccharomyces cerevisiae. / J Biol Chem 2003,278(35):32692鈥?2701. CrossRef
    84. Weisman R, Finkelstein S, Choder M: Rapamycin blocks sexual development in fission yeast through inhibition of the cellular function of an FKBP12 homolog. / J Biol Chem 2001,276(27):24736鈥?4742. CrossRef
    85. Cruz MC, Goldstein AL, Blankenship J, Del Poeta M, Perfect JR, McCusker JH, Bennani YL, Cardenas ME, Heitman J: Rapamycin and Less Immunosuppressive Analogs Are Toxic to Candida albicans and Cryptococcus neoformans via FKBP12-Dependent Inhibition of TOR. / Antimicrob Agents Chemother 2001,45(11):3162鈥?170. CrossRef
    86. Cruz MC, Cavallo LM, Gorlach JM, Cox G, Perfect JR, Cardenas ME, Heitman J: Rapamycin Antifungal Action Is Mediated via Conserved Complexes with FKBP12 and TOR Kinase Homologs in Cryptococcus neoformans. / Mol Cell Biol 1999,19(6):4101鈥?112.
    87. Arevalo-Rodriguez M, Pan X, Boeke JD, Heitman J: FKBP12 controls aspartate pathway flux in Saccharomyces cerevisiae to prevent toxic intermediate accumulation. / Euk Cell 2004,3(5):1287鈥?296. CrossRef
    88. Partaledis JA, Berlin V: The FKB2 Gene of Saccharomyces cerevisiae, Encoding the Immunosuppressant- Binding Protein FKBP-13, is Regulated in Response to Accumulation of Unfolded Proteins in the Endoplasmic Reticulum. / Proc Nat Acad Sci USA 1993,90(12):5450鈥?454. CrossRef
    89. Solscheid B, Tropschug M: A novel type of FKBP in the secretory pathway of Neurospora crassa. / FEBS Lett 2000,480(2鈥?):118鈥?22. CrossRef
    90. Segrest JP, Pownall HJ, Jackson RL, Glenner GG, Pollock PS: Amyloid A: amphipathic helixes and lipid binding. / Biochemistry 1976,15(15):3187鈥?191. CrossRef
    91. Benton BM, Zang JH, Thorner J: A novel FK506- and rapamycin-binding protein (FPR3 gene product) in the yeast Saccharomyces cerevisiae is a proline rotamase localized to the nucleolus. / J Cell Biol 1994,127(3):623鈥?39. CrossRef
    92. Manning-Krieg UC, Henriquez R, Cammas F, Graff P, Gaveriaux S, Movva NR: Purification of FKBP-70, a novel immunophilin from Saccharomyces cerevisiae, and cloning of its structural gene, FPR3. / FEBS Lett 1994,352(1):98鈥?03. CrossRef
    93. Shan X, Xue Z, Melese T: Yeast NPI46 encodes a novel prolyl cis-trans isomerase that is located in the nucleolus. / J Cell Biol 1994,126(4):853鈥?62. CrossRef
    94. Davey M, Hannam C, Wong C, Brandl CJ: The yeast peptidyl proline isomerases FPR3 and FPR4, in high copy numbers, suppress defects resulting from the absence of the E3 ubiquitin ligase TOM1. / Mol Gen Genet 2000,263(3):520鈥?26. CrossRef
    95. Hochwagen A, Tham WH, Brar GA, Amon A: The FK506 Binding Protein Fpr3 Counteracts Protein Phosphatase 1 to Maintain Meiotic Recombination Checkpoint Activity. / Cell 2005,122(6):861鈥?73. CrossRef
    96. Marchetta M, Gamberi T, Sarno S, Magherini F, Raugei G, Camici G, Pinna LA, Modesti A: Expression of the Stp1 LMW-PTP and inhibition of protein CK2 display a cooperative effect on immunophilin Fpr3 tyrosine phosphorylation and Saccharomyces cerevisiae growth. / Cell Mol Life Sci 2004,61(10):1176鈥?184. CrossRef
    97. Magherini F, Gamberi T, Paoli P, Marchetta M, Biagini M, Raugei G, Camici G, Ramponi G, Modesti A: The in vivo tyrosine phosphorylation level of yeast immunophilin Fpr3 is influenced by the LMW-PTP Ltp1. / Biochem Biophys Res Comm 2004,321(2):424鈥?31. CrossRef
    98. Himukai R, Kuzuhara T, Horikoshi M: Relationship between the subcellular localization and structures of catalytic domains of FKBP-type PPIases. / J Biochem (Tokyo) 1999,126(5):879鈥?88.
    99. Kuzuhara T, Horikoshi M: A nuclear FK506-binding protein is a histone chaperone regulating rDNA silencing. / Nat Struct Mol Biol 2004,11(3):275鈥?83. CrossRef
    100. Xu YX, Hirose Y, Zhou XZ, Lu KP, Manley JL: Pin1 modulates the structure and function of human RNA polymerase II. / Genes Dev 2003,17(22):2765鈥?776. CrossRef
    101. Wu X, Wilcox CB, Devasahayam G, Hackett RL, Arevalo-Rodriguez M, Cardenas ME, Heitman J, Hanes SD: The Ess1 prolyl isomerase is linked to chromatin remodeling complexes and the general transcription machinery. / EMBO J 2000,19(14):3727鈥?738. CrossRef
    102. Wu X, Rossettini A, Hanes SD: The ESS1 prolyl isomerase and its suppressor BYE1 interact with RNA Pol II to inhibit transcription elongation in Saccharomyces cerevisiae. / Genetics 2003,165(4):1687鈥?702.
    103. Morris DP, Phatnani HP, Greenleaf AL: Phospho-Carboxyl-Terminal Domain Binding and the Role of a Prolyl Isomerase in Pre-mRNA 3'-End Formation. / J Biol Chem 1999,274(44):31583鈥?1587. CrossRef
    104. Kops O, Zhou XZ, Lu KP: Pin1 modulates the dephosphorylation of the RNA polymerase II C-terminal domain by yeast Fcp1. / FEBS Lett 2002,513(2鈥?):305鈥?11. CrossRef
    105. Wilcox CB, Rossettini A, Hanes SD: Genetic Interactions With C-Terminal Domain (CTD) Kinases and the CTD of RNA Pol II Suggest a Role for ESS1 in Transcription Initiation and Elongation in Saccharomyces cerevisiae. / Genetics 2004,167(1):93鈥?05. CrossRef
    106. Jeong SJ, Kim HJ, Yang YJ, Seol JH, Jung BY, Han JW, Lee HW, Cho EJ: Role of RNA polymerase II carboxy terminal domain phosphorylation in DNA damage response. / J Microbiol 2005,43(6):516鈥?22.
    107. Metzner M, Stoller G, Rucknagel KP, Lu KP, Fischer G, Luckner M, Kullertz G: Functional Replacement of the Essential ESS1 in Yeast by the Plant Parvulin DlPar13. / J Biol Chem 2001,276(17):13524鈥?3529.
    108. Li Z, Li H, Devasahayam G, Gemmill T, Chaturvedi V, Hanes SD, Van Roey P: The Structure of the Candida albicans Ess1 Prolyl Isomerase Reveals a Well-Ordered Linker that Restricts Domain Mobility. / Biochemistry 2005,44(16):6180鈥?189. CrossRef
    109. Kops O, Eckerskorn C, Hottenrott S, Fischer G, Mi H, Tropschug M: Ssp1, a Site-specific Parvulin Homolog from Neurospora crassa Active in Protein Folding. / J Biol Chem 1998,273(48):31971鈥?1976. CrossRef
    110. Galat A: Peptidylprolyl cis/trans isomerases (immunophilins): biological diversity--targets--functions. / Curr Top Med Chem 2003,3(12):1315鈥?347. CrossRef
    111. Maruyama T, Suzuki R, Furutani M: Archaeal peptidyl prolyl cis-trans isomerases (PPIases) update 2004. / Front Biosci 2004, 9:1680鈥?720. CrossRef
    112. Hughes AL: The evolution of functionally novel proteins after gene duplication. / Proc Biol Sci 1994,256(1346):119鈥?24. CrossRef
    113. Lynch M, Conery JS: The Evolutionary Fate and Consequences of Duplicate Genes. / Science 2000,290(5494):1151鈥?155. CrossRef
    114. Friedman R, Hughes AL: Pattern and Timing of Gene Duplication in Animal Genomes. / Genome Res 2001,11(11):1842鈥?847.
    115. Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, de Montigny J, Marck C, Neuveglise C, Talla E, Goffard N, Frangeul L, Aigle M, Anthouard V, Babour A, Barbe V, Barnay S, Blanchin S, Beckerich JM, Beyne E, Bleykasten C, Boisrame A, Boyer J, Cattolico L, Confanioleri F, de Daruvar A, Despons L, Fabre E, Fairhead C, Ferry-Dumazet H, Groppi A, Hantraye F, Hennequin C, Jauniaux N, Joyet P, Kachouri R, Kerrest A, Koszul R, Lemaire M, Lesur I, Ma L, Muller H, Nicaud JM, Nikolski M, Oztas S, Ozier-Kalogeropoulos O, Pellenz S, Potier S, Richard GF, Straub ML, Suleau A, Swennen D, Tekaia F, Wesolowski-Louvel M, Westhof E, Wirth B, Zeniou-Meyer M, Zivanovic I, Bolotin-Fukuhara M, Thierry A, Bouchier C, Caudron B, Scarpelli C, Gaillardin C, Weissenbach J, Wincker P, Souciet JL: Genome evolution in yeasts. / Nature 2004,430(6995):35鈥?4. CrossRef
    116. Fischer G, Rocha EPC, Brunet F, ric, Vergassola M, Dujon B: Highly Variable Rates of Genome Rearrangements between Hemiascomycetous Yeast Lineages. / PLoS Genetics 2006,2(3):e32. CrossRef
    117. Wolfe KH, Shields DC: Molecular evidence for an ancient duplication of the entire yeast genome. / Nature 1997,387(6634):708鈥?13. CrossRef
    118. Langkjaer RB, Cliften PF, Johnston M, Piskur J: Yeast genome duplication was followed by asynchronous differentiation of duplicated genes. / Nature 2003,421(6925):848鈥?52. CrossRef
    119. Wolfe K: Evolutionary Genomics: Yeasts Accelerate beyond BLAST. / Current Biology 2004,14(10):R392. CrossRef
    120. Kellis M, Birren BW, Lander ES: Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. / Nature 2004,428(6983):617鈥?24. CrossRef
    121. Scannell DR, Byrne KP, Gordon JL, Wong S, Wolfe KH: Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts. / Nature 2006,440(7082):341鈥?45. CrossRef
    122. Byrne KP, Wolfe KH: The Yeast Gene Order Browser: Combining curated homology and syntenic context reveals gene fate in polyploid species. / Genome Res 2005,15(10):1456鈥?461. CrossRef
    123. Vogel C, Teichmann SA, Pereira-Leal J: The Relationship Between Domain Duplication and Recombination. / Journal of Molecular Biology 2005,346(1):355. CrossRef
    124. Bjorklund AK, Ekman D, Light S, Frey-Skott J, Elofsson A: Domain Rearrangements in Protein Evolution. / Journal of Molecular Biology 2005,353(4):911. CrossRef
    125. Bashton M, Chothia C: The geometry of domain combination in proteins. / Journal of Molecular Biology 2002,315(4):927. CrossRef
    126. Apic G, Gough J, Teichmann SA: Domain combinations in archaeal, eubacterial and eukaryotic proteomes. / Journal of Molecular Biology 2001,310(2):311. CrossRef
    127. Homann OR, Cai H, Becker JM, Lindquist SL: Harnessing Natural Diversity to Probe Metabolic Pathways. / PLoS Genetics 2005,1(6):e80. CrossRef
    128. Mager WH, Winderickx J: Yeast as a model for medical and medicinal research. / Trends in Pharmacological Sciences 2005,26(5):265鈥?73. CrossRef
    129. Mustacchi R, Hohmann S, Nielsen J: Yeast systems biology to unravel the network of life. / Yeast 2006,23(3):227鈥?38. CrossRef
    130. Arevalo-Rodriguez M, Wu X, Hanes SD, Heitman J: Prolyl isomerases in yeast. / Front Biosci 2004,1(9):2420鈥?446. CrossRef
    131. The National Centre for Biotechnology Information (NCBI) [http://www.ncbi.nlm.nih.gov/]
    132. Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, Sgouros J, Peat N, Hayles J, Baker S, Basham D, Bowman S, Brooks K, Brown D, Brown S, Chillingworth T, Nurse P: The genome sequence of Schizosaccharomyces pombe. / Nature 2002, 415:871鈥?80. CrossRef
    133. Katinka MD, Duprat S, Cornillot E, Metenier G, Thomarat F, Prensier G, Barbe V, Peyretaillade E, Brottier P, Wincker P, Delbac F, El Alaoui H, Peyret P, Saurin W, Gouy M, Weissenbach J, Vivares CP: Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. / Nature 2001,414(6862):450鈥?53. CrossRef
    134. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG: Life with 6000 genes. / Science 1996, 274:563鈥?67. CrossRef
    135. Wood V, Rutherford KM, Ivens A, Rajandream MA, Barrell B: A re-annotation of the Saccharomyces cerevisiae Genome. / Comp Funct Genomics 2001,2(3):143鈥?54. CrossRef
    136. Dietrich FS, Voegeli S, Brachat S, Lerch A, Gates K, Steiner S, Mohr C, Pohlmann R, Luedi P, Choi S, Wing RA, Flavier A, Gaffney TD, Philippsen P: The Ashbya gossypii Genome as a Tool for Mapping the Ancient Saccharomyces cerevisiae Genome. / Science 2004,304(5668):304鈥?07. CrossRef
    137. Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB, Newport G, Thorstenson YR, Agabian N, Magee PT, Davis RW, Scherer S: The diploid genome sequence of Candida albicans. / Proc Nat Acad Sci USA 2004,101(19):7329鈥?334. CrossRef
    138. Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR, Batzoglou S, Lee SI, Basturkmen M, Spevak CC, Clutterbuck J, Kapitonov V, Jurka J, Scazzocchio C, Farman M, Butler J, Purcell S, Harris S, Braus GH, Draht O, Busch S, D'Enfert C, Bouchier C, Goldman GH, Bell-Pedersen D, Griffiths-Jones S, Doonan JH, Yu J, Vienken K, Pain A, Freitag M, Selker EU, Archer DB, Penalva MA, Oakley BR, Momany M, Tanaka T, Kumagai T, Asai K, Machida M, Nierman WC, Denning DW, Caddick M, Hynes M, Paoletti M, Fischer R, Miller B, Dyer P, Sachs MS, Osmani SA, Birren BW: Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. / Nature 2005,438(7071):1105鈥?115. CrossRef
    139. Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, Berriman M, Abe K, Archer DB, Bermejo C, Bennett J, Bowyer P, Chen D, Collins M, Coulsen R, Davies R, Dyer PS, Farman M, Fedorova N, Fedorova N, Feldblyum TV, Fischer R, Fosker N, Fraser A, Garcia JL, Garcia MJ, Goble A, Goldman GH, Gomi K, Griffith-Jones S, Gwilliam R, Haas B, Haas H, Harris D, Horiuchi H, Huang J, Humphray S, Jimenez J, Keller N, Khouri H, Kitamoto K, Kobayashi T, Konzack S, Kulkarni R, Kumagai T, Lafton A, Latge JP, Li W, Lord A, Lu C, Majoros WH, May GS, Miller BL, Mohamoud Y, Molina M, Monod M, Mouyna I, Mulligan S, Murphy L, O'Neil S, Paulsen I, Penalva MA, Pertea M, Price C, Pritchard BL, Quail MA, Rabbinowitsch E, Rawlins N, Rajandream MA, Reichard U, Renauld H, Robson GD, de Cordoba SR, Rodriguez-Pena JM, Ronning CM, Rutter S, Salzberg SL, Sanchez M, Sanchez-Ferrero JC, Saunders D, Seeger K, Squares R, Squares S, Takeuchi M, Tekaia F, Turner G, de Aldana CRV, Weidman J, White O, Woodward J, Yu JH, Fraser C, Galagan JE, Asai K, Machida M, Hall N, Barrell B, Denning DW: Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. / Nature 2005,438(7071):1151鈥?156. CrossRef
    140. Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma LJ, Smirnov S, Purcell S, Rehman B, Elkins T, Engels R, Wang S, Nielsen CB, Butler J, Endrizzi M, Qui D, Ianakiev P, Bell-Pedersen D, Nelson MA, Werner-Washburne M, Selitrennikoff CP, Kinsey JA, Braun EL, Zelter A, Schulte U, Kothe GO, Jedd G, Mewes W, Staben C, Marcotte E, Greenberg D, Roy A, Foley K, Naylor J, Stange-Thomann N, Barrett R, Gnerre S, Kamal M, Kamvysselis M, Mauceli E, Bielke C, Rudd S, Frishman D, Krystofova S, Rasmussen C, Metzenberg RL, Perkins DD, Kroken S, Cogoni C, Macino G, Catcheside D, Li W, Pratt RJ, Osmani SA, DeSouza CPC, Glass L, Orbach MJ, Berglund JA, Voelker R, Yarden O, Plamann M, Seiler S, Dunlap J, Radford A, Aramayo R, Natvig DO, Alex LA, Mannhaupt G, Ebbole DJ, Freitag M, Paulsen I, Sachs MS, Lander ES, Nusbaum C, Birren B: The genome sequence of the filamentous fungus Neurospora crassa. / Nature 2003,422(6934):859鈥?68. CrossRef
    141. Loftus BJ, Fung E, Roncaglia P, Rowley D, Amedeo P, Bruno D, Vamathevan J, Miranda M, Anderson IJ, Fraser JA, Allen JE, Bosdet IE, Brent MR, Chiu R, Doering TL, Donlin MJ, D'Souza CA, Fox DS, Grinberg V, Fu J, Fukushima M, Haas BJ, Huang JC, Janbon G, Jones SJM, Koo HL, Krzywinski MI, Kwon-Chung JK, Lengeler KB, Maiti R, Marra MA, Marra RE, Mathewson CA, Mitchell TG, Pertea M, Riggs FR, Salzberg SL, Schein JE, Shvartsbeyn A, Shin H, Shumway M, Specht CA, Suh BB, Tenney A, Utterback TR, Wickes BL, Wortman JR, Wye NH, Kronstad JW, Lodge JK, Heitman J, Davis RW, Fraser CM, Hyman RW: The Genome of the Basidiomycetous Yeast and Human Pathogen Cryptococcus neoformans. / Science 2005,307(5713):1321鈥?324. CrossRef
    142. Broad Institute of MIT & Harvard: Fusarium graminearum Sequencing Project. Broad Institute of MIT and Harvard (http://www.broad.mit.edu). 2006.
    143. Guldener U, Mannhaupt G, Munsterkotter M, Haase D, Oesterheld M, Stumpflen V, Mewes HW, Adam G: FGDB: a comprehensive fungal genome resource on the plant pathogen Fusarium graminearum. / Nuc Acids Res 2006,34(suppl_1):D456鈥?58. CrossRef
    144. Broad Institute of MIT & Harvard: Ustilago maydis Sequencing Project. Broad Institute of MIT and Harvard (http://www.broad.mit.edu). 2006.
    145. Broad Institute of MIT & Harvard: Rhizopus oryzae Sequencing Project. Broad Institute of MIT and Harvard (http://www.broad.mit.edu). 2006.
    146. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. / Nuc Acids Res 1997,25(17):3389鈥?402. CrossRef
    147. Galat A: Sequence diversification of the FK506-binding proteins in several different genomes. / Eur J Biochem 2000,267(16):4945鈥?959. CrossRef
    148. Galat A: Function-dependent clustering of orthologues and paralogues of cyclophilins. / Proteins 2004,56(4):808鈥?20. CrossRef
    149. Universal Protein Resource (UniProt) [http://www.uniprot.org/]
    150. Marchler-Bauer A, Panchenko AR, Shoemaker BA, Thiessen PA, Geer LY, Bryant SH: CDD: a database of conserved domain alignments with links to domain three-dimensional structure. / Nuc Acids Res 2002, 30:281鈥?83. CrossRef
    151. NCBI Conserved Domain Database (CDD) [http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi]
    152. Horton P, Nakai K: A probabilistic classification system for predicting the cellular localization sites of proteins. / Proc Int Conf Intell Syst Mol Biol 1996, 4:109鈥?15.
    153. Horton P, Nakai K: Better prediction of protein cellular localization sites with the k nearest neighbors classifier. / Proc Int Conf Intell Syst Mol Biol 1997, 5:147鈥?52.
    154. National Institute for Basic Biology (NIBB) PSORT server [http://psort.nibb.ac.jp/]
    155. Expert Protein Analysis System (ExPASy) PI/Mw calculation tool [http://www.expasy.ch/tools/pi_tool.html]
    156. Campanella J, Bitincka L, Smalley J: MatGAT: An application that generates similarity/identity matrices using protein or DNA sequences. / BMC Bioinformatics 2003,4(1):29. CrossRef
    157. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. / Nuc Acids Res 1997, 24:4876鈥?882. CrossRef
    158. Saitou N, Nei M: The Neighbor-joining Method: A New Method for Reconstructing Phylogenetic Trees. / Mol Biol Evol 1987,4(4):406鈥?25.
    159. Kumar S, Tamura K, Nei M: MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. / Brief Bioinform 2004,5(2):150鈥?63. CrossRef
    160. Tatusov RL, Koonin EV, Lipman DJ: A genomic perspective on protein families. / Science 1997, 278:631鈥?37. CrossRef
    161. Koonin EV, Tatusov RL, Rudd KE: Sequence Similarity Analysis of Escherichia coli Proteins: Functional and Evolutionary Implications. / PNAS 1995,92(25):11921鈥?1925. CrossRef
    162. Koonin EV, Tatusov RL, Rudd KE: Protein sequence comparison at genome scale. / Methods In Enzymology 1996, 266:295鈥?22. CrossRef
    163. Cai J, Roberts IN, Collins MD: Phylogenetic relationships among members of the ascomycetous yeast genera Brettanomyces, Debaryomyces, Dekkera, and Kluyveromyces deduced by small-subunit rRNA gene sequences. / Int J Syst Bacteriol 1996,46(2):542鈥?49. CrossRef
  • 作者单位:Trevor J Pemberton (1)

    1. Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, Los Angeles, CA, 90033, USA
文摘
Background The peptidyl-prolyl cis/trans isomerase (PPIase) class of proteins is present in all known eukaryotes, prokaryotes, and archaea, and it is comprised of three member families that share the ability to catalyze the cis/trans isomerisation of a prolyl bond. Some fungi have been used as model systems to investigate the role of PPIases within the cell, however how representative these repertoires are of other fungi or humans has not been fully investigated. Results PPIase numbers within these fungal repertoires appears associated with genome size and orthology between repertoires was found to be low. Phylogenetic analysis showed the single-domain FKBPs to evolve prior to the multi-domain FKBPs, whereas the multi-domain cyclophilins appear to evolve throughout cyclophilin evolution. A comparison of their known functions has identified, besides a common role within protein folding, multiple roles for the cyclophilins within pre-mRNA splicing and cellular signalling, and within transcription and cell cycle regulation for the parvulins. However, no such commonality was found with the FKBPs. Twelve of the 17 human cyclophilins and both human parvulins, but only one of the 13 human FKBPs, identified orthologues within these fungi. hPar14 orthologues were restricted to the Pezizomycotina fungi, and R. oryzae is unique in the known fungi in possessing an hCyp33 orthologue and a TPR-containing FKBP. The repertoires of Cryptococcus neoformans, Aspergillus fumigatus, and Aspergillus nidulans were found to exhibit the highest orthology to the human repertoire, and Saccharomyces cerevisiae one of the lowest. Conclusion Given this data, we would hypothesize that: (i) the evolution of the fungal PPIases is driven, at least in part, by the size of the proteome, (ii) evolutionary pressures differ both between the different PPIase families and the different fungi, and (iii) whilst the cyclophilins and parvulins have evolved to perform conserved functions, the FKBPs have evolved to perform more variable roles. Also, the repertoire of Cryptococcus neoformans may represent a better model fungal system within which to study the functions of the PPIases as its genome size and genetic tractability are equal to those of Saccharomyces cerevisiae, whilst its repertoires exhibits greater orthology to that of humans. However, further experimental investigations are required to confirm this.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.