Diffusion Kurtosis Imaging Detects Microstructural Alterations in Brain of α-Synuclein Overexpressing Transgenic Mouse Model of Parkinson’s Disease: A Pilot Study
详细信息    查看全文
  • 作者:Amit Khairnar ; Peter Latta ; Eva Drazanova ; Jana Ruda-Kucerova…
  • 关键词:Diffusion kurtosis imaging ; α ; Synuclein ; TNWT ; 61 ; Parkinson’s disease ; Transgenic mice ; TBSS
  • 刊名:Neurotoxicity Research
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:28
  • 期:4
  • 页码:281-289
  • 全文大小:943 KB
  • 参考文献:Blockx I, Verhoye M, Van Audekerke J, Bergwerf I, Kane JX, Delgado YPR, Veraart J, Jeurissen B, Raber K, von Horsten S, Ponsaerts P, Sijbers J, Leergaard TB, Van der Linden A (2012) Identification and characterization of Huntington related pathology: an in vivo DKI imaging study. NeuroImage 63(2):653-62CrossRef PubMed <br>Boska MD, Hasan KM, Kibuule D, Banerjee R, McIntyre E, Nelson JA, Hahn T, Gendelman HE, Mosley RL (2007) Quantitative diffusion tensor imaging detects dopaminergic neuronal degeneration in a murine model of Parkinson’s disease. Neurobiol Dis 26(3):590-96CrossRef PubMed Central PubMed <br>Chesselet MF (2008) In vivo alpha-synuclein overexpression in rodents: a useful model of Parkinson’s disease? Exp Neurol 209(1):22-7CrossRef PubMed Central PubMed <br>Chesselet MF, Richter F, Zhu C, Magen I, Watson MB, Subramaniam SR (2012) A progressive mouse model of Parkinson’s disease: the Thy1-aSyn (“Line 61- mice. Neurotherapeutics 9(2):297-14CrossRef PubMed Central PubMed <br>Cheung JS, Wang E, Lo EH, Sun PZ (2012) Stratification of heterogeneous diffusion MRI ischemic lesion with kurtosis imaging: evaluation of mean diffusion and kurtosis MRI mismatch in an animal model of transient focal ischemia. Stroke 43(8):2252-254CrossRef PubMed Central PubMed <br>Cochrane CJ, Ebmeier KP (2013) Diffusion tensor imaging in parkinsonian syndromes: a systematic review and meta-analysis. Neurology 80(9):857-64CrossRef PubMed Central PubMed <br>Delenclos M, Carrascal L, Jensen K, Romero-Ramos M (2014) Immunolocalization of human alpha-synuclein in the Thy1-aSyn (“Line 61- transgenic mouse line. Neuroscience 277:647-64CrossRef PubMed <br>Delgado y Palacios R, Campo A, Henningsen K, Verhoye M, Poot D, Dijkstra J, Van Audekerke J, Benveniste H, Sijbers J, Wiborg O, Van der Linden A (2011) Magnetic resonance imaging and spectroscopy reveal differential hippocampal changes in anhedonic and resilient subtypes of the chronic mild stress rat model. Biol Psychiatry 70(5):449-57CrossRef PubMed <br>Falangola MF, Guilfoyle DN, Tabesh A, Hui ES, Nie X, Jensen JH, Gerum SV, Hu C, LaFrancois J, Collins HR, Helpern JA (2014) Histological correlation of diffusional kurtosis and white matter modeling metrics in cuprizone-induced corpus callosum demyelination. NMR Biomed 27(8):948-57CrossRef PubMed <br>Fleming SM, Salcedo J, Fernagut PO, Rockenstein E, Masliah E, Levine MS, Chesselet MF (2004) Early and progressive sensorimotor anomalies in mice overexpressing wild-type human alpha-synuclein. J Neurosci 24(42):9434-440CrossRef PubMed <br>Fleming SM, Fernagut PO, Chesselet MF (2005) Genetic mouse models of parkinsonism: strengths and limitations. NeuroRx 2(3):495-03CrossRef PubMed Central PubMed <br>Fleming SM, Salcedo J, Hutson CB, Rockenstein E, Masliah E, Levine MS, Chesselet MF (2006) Behavioral effects of dopaminergic agonists in transgenic mice overexpressing human wildtype alpha-synuclein. Neuroscience 142(4):1245-253CrossRef PubMed Central PubMed <br>Giannelli M, Toschi N, Passamonti L, Mascalchi M, Diciotti S, Tessa C (2012) Diffusion kurtosis and diffusion-tensor MR imaging in Parkinson disease. Radiology 265(2):645-46 author reply 6-7 CrossRef PubMed <br>Hui ES, Du F, Huang S, Shen Q, Duong TQ (2012) Spatiotemporal dynamics of diffusional kurtosis, mean diffusivity and perfusion changes in experimental stroke. Brain Res 1451:100-09CrossRef PubMed Central PubMed <br>Jensen JH, Helpern JA (2010) MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed 23(7):698-10CrossRef PubMed Central PubMed <br>Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K (2005) Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 53(6):1432-440CrossRef PubMed <br>Kamagata K, Tomiyama H, Motoi Y, Kano M, Abe O, Ito K, Shimoji K, Suzuki M, Hori M, Nakanishi A, Kuwatsuru R, Sasai K, Aoki S, Hattori N (2013) Diffusional kurtosis imaging of cingulate fibers in Parkinson disease: comparison with conventional diffusion tensor imaging. Magn Reson Imaging 31(9):1501-506CrossRef PubMed <br>Kamagata K, Tomiyama H, Hatano T, Motoi Y, Abe O, Shimoji K, Kamiya K, Suzuki M, Hori M, Yoshida M, Hattori N, Aoki S (2014) A preliminary diffusional kurtosis imaging study of Parkinson disease: comparison with conventional diffusion tensor imaging. Neuroradiology 56(3):251-58CrossRef PubMed <br>Lang AE, Mikulis D (2009) A new sensitive imaging biomarker for Parkinson disease? Neurology 72(16):1374-375CrossRef PubMed <br>Leemans A, Jeurissen B, Sijbers J, Jones DK (2009) ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data. In: 17th Annual Meeting of Intl Soc Mag Reson Med, Hawaii, USA<br>Lerner A, Mogensen MA, Kim PE, Shiroishi MS, Hwang DH, Law M (2013) Clinical applications of diffusion tensor imaging. World Neurosurg 82(1-):96-09PubMed <br>Meijer FJ, Goraj B (2014) Brain MRI in Parkinson’s disease.
  • 作者单位:Amit Khairnar (1) <br> Peter Latta (2) <br> Eva Drazanova (3) (5) <br> Jana Ruda-Kucerova (4) (5) <br> Nikoletta Szabó (6) <br> Anas Arab (4) (5) <br> Birgit Hutter-Paier (7) <br> Daniel Havas (7) <br> Manfred Windisch (8) <br> Alexandra Sulcova (4) <br> Zenon Starcuk Jr. (2) (3) <br> Irena Rektorova (1) <br><br>1. Applied Neuroscience Research Group, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic <br> 2. Multimodal and Functional Imaging Laboratory, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic <br> 3. Institute of Scientific Instruments, Academy of Sciences of the Czech Republic, Brno, Czech Republic <br> 5. Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic <br> 4. Experimental and Applied Neuropsychopharmacology Group, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic <br> 6. Department of Neurology, Faculty of Medicine, Albert Szent-Gy?rgyi Clinical Centre, University of Szeged, Szeged, Hungary <br> 7. QPS Austria GmbH, Grambach, Austria <br> 8. NeuroScios GmbH, Graz, Austria <br>
  • 刊物主题:Neurosciences; Neurology; Neurochemistry; Pharmacology/Toxicology; Neurobiology; Cell Biology;
  • 出版者:Springer US
  • ISSN:1476-3524
文摘
Evidence suggests that accumulation and aggregation of α-synuclein contribute to the pathogenesis of Parkinson’s disease (PD). The aim of this study was to evaluate whether diffusion kurtosis imaging (DKI) will provide a sensitive tool for differentiating between α-synuclein-overexpressing transgenic mouse model of PD (TNWT-61) and wild-type (WT) littermates. This experiment was designed as a proof-of-concept study and forms a part of a complex protocol and ongoing translational research. Nine-month-old TNWT-61 mice and age-matched WT littermates underwent behavioral tests to monitor motor impairment and MRI scanning using 9.4 Tesla system in vivo. Tract-based spatial statistics (TBSS) and the DKI protocol were used to compare the whole brain white matter of TNWT-61 and WT mice. In addition, region of interest (ROI) analysis was performed in gray matter regions such as substantia nigra, striatum, hippocampus, sensorimotor cortex, and thalamus known to show higher accumulation of α-synuclein. For the ROI analysis, both DKI (6 b-values) protocol and conventional (2 b-values) diffusion tensor imaging (cDTI) protocol were used. TNWT-61 mice showed significant impairment of motor coordination. With the DKI protocol, mean, axial, and radial kurtosis were found to be significantly elevated, whereas mean and radial diffusivity were decreased in the TNWT-61 group compared to that in the WT controls with both TBSS and ROI analysis. With the cDTI protocol, the ROI analysis showed decrease in all diffusivity parameters in TNWT-61 mice. The current study provides evidence that DKI by providing both kurtosis and diffusivity parameters gives unique information that is complementary to cDTI for in vivo detection of pathological changes that underlie PD-like symptomatology in TNWT-61 mouse model of PD. This result is a crucial step in search for a candidate diagnostic biomarker with translational potential and relevance for human studies. Keywords Diffusion kurtosis imaging α-Synuclein TNWT-61 Parkinson’s disease Transgenic mice TBSS
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.