A gas-phase ab initio study of the hydrolysis of HCN
详细信息    查看全文
  • 作者:Futing Xia ; Ping Ning ; Qiulin Zhang ; Fenji Li…
  • 关键词:HCN hydrolysis ; Mechanism ; MP2 ; Water assist ; Proton transfer
  • 刊名:Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta)
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:135
  • 期:1
  • 全文大小:2,270 KB
  • 参考文献:1. http://​www.​osha.​gov/​SLTC/​healthguidelines​/​hydrogencyanide/​recognition.​html
    2.Tian FJ, Yu JL, McKenzie LJ, Hayashi J, Li CZ (2007) Energy Fuel 21:517–521CrossRef
    3.Rahaman MSA, Ismail AF, Mustafa A (2007) Polym Degrad Stab 92:1421–1432CrossRef
    4.Baum MM, Moss JA, Pastel SH, Poskrebyshev AGA (2007) Environ Sci Technol 41:857–862CrossRef
    5.Karlsson HL (2004) Sci Total Environ 334:125–132CrossRef
    6.Zhao Q, Tian SL, Yan LX, Zhang QL, Ning P (2015) J Hazard Mater 285:250–258CrossRef
    7.Oliver TM, Jugoslav K, Aleksandar P, Nikola D (2005) Chem Eng Process 44:1181–1187CrossRef
    8.Ye PW, Luan ZQ, Li K, Yu LQ, Zhang JC (2009) Carbon 47:1799–1805CrossRef
    9.Kröcher O, Elsener M (2009) Appl Catal B Environ 92:75–89CrossRef
    10.Giménez-López J, Millera A, Bilbao R, Alzueta MU (2010) Combust Flame 157:267–276CrossRef
    11.Zhao HB, Tonkyn RG, Barlow SE, Koel BE, Peden CHF (2006) Appl Catal B Environ 65:282–290CrossRef
    12.Rastegar SF, Peyghan AA, Hadipour NL (2013) Appl Surf Sci 265:412–417CrossRef
    13.Zhao M, Yang F, Xue Y, Xiao D, Guo Y (2014) J Mol Model 20:2214–2218CrossRef
    14.Shi LB, Wang YP, Dong HK (2015) Appl Surf Sci 329:330–336CrossRef
    15.Miyadera T (1998) Appl Catal B Environ 16:155–164CrossRef
    16.Hu XB, Liang WC, Han SJ (2005) J Phys Chem B 109:5935–5944CrossRef
    17.Xia FT, Zhu H (2011) J Comput Chem 32:2545–2554CrossRef
    18.Deng C, Li QG, Ren Y, Wong NB, Chu SY, Zhu HJ (2008) J Comput Chem 29:466–480CrossRef
    19.Deng C, Wu XP, Sun XM, Ren Y, Sheng YH (2009) J Comput Chem 30:285–294CrossRef
    20.Zeng Y, Xue Y, Yan GS (2008) J Phys Chem B 112:10659–10667CrossRef
    21.Gao JY, Zeng Y, Zhang CH, Xue Y (2009) J Phys Chem A 113:325–331CrossRef
    22.Malaspina T, Fileti EE, Riveros JM, Canuto S (2006) J Phys Chem A 110:10303–10308CrossRef
    23.Galano A (2007) J Phys Chem A 111:5086–5091CrossRef
    24.Hu XF, Trenary M (2012) J Phys Chem C 116:4091–4096CrossRef
    25.Chandra AK, Uchimaru T (2001) J Phys Chem A 105:3578–3582CrossRef
    26.Gardebien F, Sevin A (2003) J Phys Chem A 107:3925–3934CrossRef
    27.Frisch MJ et al (2005) Gaussian 03, Version D. 01. Gaussian, Inc., Pittsburgh
    28.Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261CrossRef
    29.Gordon MS (1980) Chem Phys Lett 76:163–168CrossRef
    30.Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161CrossRef
    31.Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527CrossRef
    32.Wiberg KB (1968) Tetrahedron 24:1083–1096CrossRef
    33.Glendening ED, Reed AE, Carpenter JE, Weinhold F. NBO Version 3.1
    34.Moyano A, Pericàs MA, Valentí A (1989) J Org Chem 54:573–582CrossRef
    35.Hu X, Li H, Liang W, Han S (2004) J Phys Chem B 108:12999–13007CrossRef
  • 作者单位:Futing Xia (1) (2) (3)
    Ping Ning (4)
    Qiulin Zhang (4)
    Fenji Li (1) (2)
    Gaohong Tao (1) (2)
    Kai Tian (1) (2)
    Xiangzhong Huang (1) (2)
    Jinhui Peng (1) (2) (3)
    Hua Zhu (5)

    1. Joint Research Centre for International Cross-Border Ethnic Regions Biomass Clean Utilization in Yunnan, Yunnan Minzu University, Kunming, 650500, China
    2. Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Yunnan Minzu University, Kunming, 650500, China
    3. State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming, 650093, China
    4. Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
    5. School of Chemistry, Sichuan University, Chengdu, 610064, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Theoretical and Computational Chemistry
    Inorganic Chemistry
    Organic Chemistry
    Physical Chemistry
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-2234
文摘
The catalyzed hydrolysis of HCN has become one of the most promising methods for the purification of HCN emissions. Three types of reaction mechanisms (named path A, B and C) for HCN hydrolysis were considered, and a total of 51 geometries including 20 transition states were optimized using ab initio MP2 methods with the 6-31++G(d,p) basis set. They share the first step of water attack for path A and B. In the following process, the proton of oxygen atom shifts to the nitrogen atom first for path A, while in path B, the proton of carbon atom shifts first. The path C contains the structural tautomer interconversion from HCN to HNC, and it turns out to be the most favorable pathway. Additionally, the water-assisted hydrolysis reaction mechanisms were examined for the three types of reaction processes. The inclusion of the auxiliary water decreases most of the Gibbs free energy barriers, and the formamide is the most stable intermediate on the free energy surface. The Gibbs free energy barrier of w-path A (50.39 kcal/mol) becomes the lowest. It is found that the process with the transfer of H atom from the C atom to the N atom is the rate-controlling step, and the efficient catalyst should activate C–N bond and assist the proton transfer. This information may help in designing new catalysts for this important reaction.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.