Inflation in the light of BICEP2 and PLANCK
详细信息    查看全文
  • 作者:SUBHENDRA MOHANTY
  • 关键词:Inflation ; supergravity ; Gibbons–Hawking ; BICEP2 ; PLANCK. ; 98.80.Cq ; 04.65.+e
  • 刊名:Pramana
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:86
  • 期:2
  • 页码:353-361
  • 全文大小:263 KB
  • 参考文献:[1]BICEP2 Collaboration: P A R Ade et al, Phys. Rev. Lett. 112(24), 241101 (2014), arXiv:1403.​3985 [astro-ph.CO]
    [2]PLANCK Collaboration: P A R Ade et al, PLANCK 2013 results. XXII. Constraints on inflation, arXiv:1303.​5082 [astro-ph.CO]
    [3]M Gerbino, A Marchini, L Pagano, L Salvati, E Di Valentino and A Melchiorri, Blue gravity waves from BICEP2?, arXiv:1403.​5732 [astro-ph.CO]
    [4]K M Smith, C Dvorkin, L Boyle, N Turok, M Halpern, G Hinshaw and B Gold, On quantifying and resolving the BICEP2/Planck tension over gravitational waves, arXiv:1404.​0373 [astro-ph.CO]
    [5]Y Wang and W Xue, Inflation and alternatives with blue tensor spectra, arXiv:1403.​5817 [astro-ph.CO]
    [6]PLANCK Collaboration: R Adam et al, PLANCK intermediate results. XXX. The angular power spectrum of polarized dust emission at intermediate and high galactic latitudes, arXiv:1409.​ 5738 [astro-ph.CO]
    [7]BICEP2 /Keck and PLANCK Collaborations: P A R Ade et al, A joint analysis of BICEP2 /Keck array and PLANCK data, arXiv:1502.​00612 [astro-ph.CO]
    [8]W N Colley and J R Gott, Mon. Not. R. Astron. Soc. 447(2), 2034 (2015), arXiv:1409.​4491 [astro-ph.CO]
    [9]PLANCK Collaboration, PLANCK 2015 results. XIII. Cosmological parameters, arXiv:1502.​01589 [astro-ph.CO]
    [10]A A Starobinsky, Phys. Lett. B 91, 99 (1980)CrossRef ADS
    [11]F L Bezrukov and M Shaposhnikov, Phys. Lett. B 659, 703 (2008), arXiv:0710.​3755 [hep-th]
    [12]S Cecotti, Phys. Lett. B 190, 86 (1987)CrossRef ADS MathSciNet
    [13]J Ellis, D V Nanopoulos and K A Olive, Phys. Rev. Lett. 111, 111301 (2013) Erratum, ibid. 111(12), 129902 (2013), arXiv:1305.​ 1247 [hep-th]
    [14]R Kallosh and A Linde, J. Cosmol. Astropart. Phys. 1306, 028 (2013) arXiv:1306.​3214 [hep-th]CrossRef ADS MathSciNet
    [15]S Cecotti, S Ferrara, M Porrati, and S Sabharwal, Nucl. Phys. B 306, 160 (1988)CrossRef ADS MathSciNet
    [16]S Ferrara, R Kallosh, A Linde, and M Porrati, Phys. Rev. D 88(8), 085038 (2013) arXiv:1307.​7696 [hep-th]CrossRef ADS
    [17]W Buchmuller, V Domcke, and K Kamada, Phys. Lett. B 726, 467 (2013) arXiv:1306.​3471 [hep-th]CrossRef ADS
    [18]F Farakos, A Kehagias, and A Riotto, Nucl. Phys. B 876, 187 (2013) arXiv:1307.​1137 CrossRef ADS MathSciNet MATH
    [19]S Ferrara, R Kallosh, A Linde, and M Porrati, J. Cosmol. Astropart. Phys. 1311, 046 (2013) arXiv:1309.​1085 [hep-th]CrossRef ADS MathSciNet
    [20]G K Chakravarty and S Mohanty, The power law Starobinsky model, arXiv:1405.​1321 [hep-ph]
    [21]E Cremmer, B Julia, J Scherk, S Ferrara, L Girardello, and P van Nieuwenhuizen, Nucl. Phys. B 147, 105 (1979)CrossRef ADS MathSciNet
    [22]G W Gibbons and S W Hawking, Phys. Rev. D 15, 2738 (1977)CrossRef ADS MathSciNet
    [23]S Mohanty and A Nautiyal, Red and blue tilted tensor spectrum from Gibbons–Hawking temperature, arXiv:1404.​2222 [hep-ph]
    [24]T P Sotiriou and V Faraoni, Rev. Mod. Phys. 82, 451 (2010) arXiv:0805.​1726 [gr-qc]CrossRef ADS MathSciNet MATH
    [25]A De Felice and S Tsujikawa, Rev. Rel. 13, 3 (2010) arXiv:1002.​4928 [gr-qc]
    [26]S ’i Nojiri and S D Odintsov, Phys. Rep. 505, 59 (2011) arXiv:1011.​0544 [gr-qc]CrossRef ADS MathSciNet
    [27]A M Polyakov, Infrared instability of the de Sitter space, arXiv:1209.​4135 [hep-th]
    [28]P R Anderson and E Mottola, On the instability of global de Sitter space to particle creation, arXiv:1310.​0030 [gr-qc]
    [29]S Singh, C Ganguly, and T Padmanabhan, Phys. Rev. D 87, 104004 (2013) arXiv:1302.​7177 [gr-qc]CrossRef ADS
    [30]T Mishima and A Nakayama, Phys. Rev. D 37, 348 (1988)CrossRef ADS MathSciNet
    [31]R H Brandenberger and R Kahn, Phys. Lett. B 119, 75 (1982)CrossRef ADS MathSciNet
    [32]E Mottola, Phys. Rev. D 31, 754 (1985)CrossRef ADS MathSciNet
    [33]B Allen and A Folacci, Phys. Rev. D 35, 3771 (1987)CrossRef ADS MathSciNet
    [34]M Spradlin, A Strominger and A Volovich, Les Houches lectures on de Sitter space, hep-th/​0110007
    [35]B Greene, M Parikh, and J P van der Schaar, J. High Energy Phys. 0604, 057 (2006) hep-th/​0512243 CrossRef ADS MathSciNet
  • 作者单位:SUBHENDRA MOHANTY (1)

    1. Physical Research Laboratory, Ahmedabad, 380 009, India
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Physics
    Astronomy
    Astrophysics
  • 出版者:Springer India
  • ISSN:0973-7111
文摘
The BICEP2 /Keck + PLANCK joint analysis of the B-model polarization and polarization by foreground dust sets an upper bound on the tensor-to-scalar ratio of r 0.05 < 0.12 at 95% CL. The popular Starorbinsky model Higgs-inflation or the conformally equivalent Higgs-inflation model allow low r values (∼ 10−3). We survey the generalizations of the Starobinsky–Higgs models which would allow larger values (r ∼ 0.1). The Starobinsky–Higgs inflation models require an exponential potential which can be naturally derived from SUGRA models. We show that a variation of the no-scale SUGRA model can give rise to the generalized Starobinsky models which give large r. We also examine non-standard boundary conditions which would allow a large deviation of the tensor spectral index from the slow roll values and propose that the presence of a thermal component in the tensor spectrum arises from Gibbons–Hawking temperature of the de-Sitter space. Keywords Inflation supergravity Gibbons–Hawking BICEP2 PLANCK.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.