Effects of pre-reversal enhancement of E?×?B drift on the latitudinal extension of plasma bubble in Southeast Asia
详细信息    查看全文
  • 作者:Prayitno Abadi ; Yuichi Otsuka ; Takuya Tsugawa
  • 关键词:Equatorial ionosphere ; Plasma bubble ; Pre ; reversal enhancement ; Scintillation
  • 刊名:Earth, Planets and Space
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:67
  • 期:1
  • 全文大小:2033KB
  • 参考文献:Abadi P, Saito S, Srigutomo W (2014) Low-latitude scintillation occurrences around the equatorial anomaly crest over Indonesia. Ann Geophys 32:7-7. doi:10.5194/angeo-32-7-2014CrossRef
    Abdu MA, de Medeiros RT, Nakamura Y (1983) Latitudinal and magnetic flux extension of the equatorial spread F irregularities. J Geophys Res 88(A6):4861-868CrossRef
    Bagiya MS, Sridharan R, Sunda S (2013) Pre-assessment of the “strength-and “latitudinal extent-of L-band scintillation: a case study. J Geophys Res 118:488-95. doi:10.1029/2012JA017989CrossRef
    Beniguel Y, Romano V, Alfonsi L, Aquino M, Bourdillon A, Cannon P, de Franceschi G, Dubey S, Forte B, Gherm V, Jakowski N, Materassi M, Noack T, Pozoga M, Rogers N, Spalla P, Strangeways HJ, Warrington EM, Wernik A, Wilken V, Zernov N (2009) Ionospheric scintillation monitoring and modelling. Ann Geophys-Italy 52:391-16
    Bittencourt JA, Abdu MA (1981) A theoretical comparison between apparent and real vertical ionization drift velocities in the equatorial F region. J Geophys Res 86:2451-454CrossRef
    Dabas RS, Lakshmi DR, Reddy BM (1998) Day-to-day variability in the occurrence of equatorial and low-latitude scintillations in the Indian zone. Rad Sci 33(1):89-6CrossRef
    Farley DT, Balsley BB, Woodman RF, McClure JP (1970) Equatorial spread F: implications of VHF radar observations. J Geophys Res 75(34):7199-216CrossRef
    Fejer BG, Scherliess L, de Paula ER (1999) Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F. J Geophys Res 104(A9):19859-9869CrossRef
    Jayachandran B, Balan N, Rao PB, Sastri JH, Bailey GJ (1993) HF Doppler and ionosonde observations on the onset conditions of equatorial spread-F. J Geophys Res 98(A8):13741-3750CrossRef
    Krall J, Huba JD, Ossakow SL, Joyce G (2010) Why do equatorial ionospheric bubbles stop rising? Geophys Res Lett 37:L09105. doi:10.1029/2010GL043128CrossRef
    Maruyama T, Kawamura M, Saito S, Nozaki K, Kato H, Hemmakorn N, Boonchuk T, Ha Duyen C (2007) Low latitude ionosphere-thermosphere dynamics studies with ionosonde chain in Southeast Asia. Ann Geophys 25:1569-577CrossRef
    Narayanan VL, Sau S, Gurubaran S, Shiokawa K, Balan N, Emperumal K, Sripathi S (2014) A statistical study of satellite traces and evolution of equatorial spread F. Earth Planets Space 66:160CrossRef
    Sultan PJ (1996) Linear theory and modelling of the Rayleigh-Taylor instability leading to the occurrence of equatorial spread F. J Geophys Res 101(A12):26875-6891CrossRef
    Tsunoda RT (2010) On equatorial spread F: establishing a seeding hypothesis. J Geophys Res 115:A12303. doi:10.1029/2010JA015564CrossRef
    Valladares CE, Villalobos J, Sheehan R, Hagan MP (2004) Latitudinal extension of low-latitude scintillations measured with a network of GPS receivers. Ann Geophys 22:3155-175CrossRef
  • 作者单位:Prayitno Abadi (1) (2)
    Yuichi Otsuka (2)
    Takuya Tsugawa (3)

    1. Space Science Center, the Indonesian National Institute of Aeronautics and Space (LAPAN), Bandung, Jawa Barat, Indonesia
    2. Solar-Terrestrial Environment Laboratory (STEL), Nagoya University, Nagoya, Aichi, Japan
    3. National Institute of Information and Communications Technology (NICT), Koganei, Tokyo, Japan
  • 刊物类别:Earth Sciences, general; Geology; Geophysics/Geodesy;
  • 刊物主题:Earth Sciences, general; Geology; Geophysics/Geodesy;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1880-5981
文摘
We investigated the effects of the F region bottomside altitude (h’F), maximum upward E?×?B drift velocity, duration of pre-reversal enhancement and the integral of upward E?×?B drift on the latitudinal extension of equatorial plasma bubbles in the Southeast Asian sector using the observations recorded by three GPS receivers and two ionosondes. The GPS receivers are installed at Kototabang (0.2°S, 100.3°E; 9.9°S magnetic latitude), Pontianak (0.02°S, 109.3°E; 9.8°S magnetic latitude) and Bandung (6.9°S, 107.6°E; 16.7°S magnetic latitude) in Indonesia. The ionosondes are installed at magnetically equatorial stations, Chumphon (10.7°N, 99.4°E; 0.86°N magnetic latitude) in Thailand and Bac Lieu (9.3°N, 105.7°E; 0.62°N magnetic latitude) in Vietnam. We analysed those observations acquired in the equinoctial months (March, April, September and October) in 2010-012, when the solar activity index F 10.7 was in the range from 75 to 150. Assuming that plasma bubbles are the major source of scintillations, the latitudinal extension of the bubbles was determined according to the S4 index. We have found that the peak of h’F, maximum upward E?×?B drift and the integral of upward E?×?B drift during the pre-reversal enhancement period are positively correlated with the maximum latitude extension of plasma bubbles, but that duration of pre-reversal enhancement does not show correlation. The plasma bubbles reached magnetic latitudes of 10°-0° in the following conditions: (1) the peak value of h’F is greater than 250-50 km, (2) the maximum upward E?×?B drift is greater than 10-0 m/s and (3) the integral of upward E?×?B drift is greater than 50-50 m/s. These results suggest that the latitudinal extension of plasma bubbles is controlled mainly by the magnitude of pre-reversal enhancement and the peak value of h’F at the initial phase of development of plasma bubbles (or equatorial spread F) rather than by the duration of pre-reversal enhancement. Keywords Equatorial ionosphere Plasma bubble Pre-reversal enhancement Scintillation
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.