Regulating the Ubiquitin/Proteasome Pathway Via cAMP-signaling: Neuroprotective Potential
详细信息    查看全文
  • 作者:He Huang (1)
    Hu Wang (1)
    Maria E. Figueiredo-Pereira (1)
  • 关键词:Ubiquitin/proteasome pathway ; cAMP ; Therapy ; Protein aggregation
  • 刊名:Cell Biochemistry and Biophysics
  • 出版年:2013
  • 出版时间:September 2013
  • 年:2013
  • 卷:67
  • 期:1
  • 页码:55-66
  • 全文大小:314KB
  • 参考文献:1. Kebabian, J. W., Petzold, G. L., & Greengard, P. (1972). Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to the “dopamine receptor- / Proceedings of the National Academy of Sciences, / 69, 2145-149. CrossRef
    2. Ravindran, S. (2011). Paul Greengard: Signals underlying moods, addictions, and brain disorders. / Proceedings of the National Academy of Sciences, / 108, 18872-8874. CrossRef
    3. Kamenetsky, M., Middelhaufe, S., Bank, E. M., Levin, L. R., Buck, J., & Steegborn, C. (2006). Molecular details of cAMP generation in mammalian cells: A tale of two systems. / Journal of Molecular Biology, / 362, 623-39. CrossRef
    4. Pavan, B., Biondi, C., & Dalpiaz, A. (2009). Adenylyl cyclases as innovative therapeutic goals. / Drug Discovery Today, / 14, 982-91. CrossRef
    5. Tresguerres, M., Levin, L. R., & Buck, J. (2011). Intracellular cAMP signaling by soluble adenylyl cyclase. / Kidney International, / 79, 1277-288. CrossRef
    6. Braun, T., & Dods, R. F. (1975). Development of a Mn-2+ -sensitive, “soluble-adenylate cyclase in rat testis. / Proceedings of the National Academy of Sciences, / 72, 1097-101. CrossRef
    7. Pierre, S., Eschenhagen, T., Geisslinger, G., & Scholich, K. (2009). Capturing adenylyl cyclases as potential drug targets. / Nature Reviews Drug Discovery, / 8, 321-35. CrossRef
    8. Zhang, M., Storm, D. R., & Wang, H. (2011). Bidirectional synaptic plasticity and spatial memory flexibility require Ca2+ -stimulated adenylyl cyclases. / Journal of Neuroscience, / 31, 10174-0183. CrossRef
    9. Dunn, T. A., Storm, D. R., & Feller, M. B. (2009). Calcium-dependent increases in protein kinase-A activity in mouse retinal ganglion cells are mediated by multiple adenylate cyclases. / PLoS ONE, / 4, e7877. CrossRef
    10. Schwoch, G., Trinczek, B., & Bode, C. (1990). Localization of catalytic and regulatory subunits of cyclic AMP-dependent protein kinases in mitochondria from various rat tissues. / Biochemical Journal, / 270, 181-88.
    11. Acin-Perez, R., Salazar, E., Kamenetsky, M., Buck, J., Levin, L. R., & Manfredi, G. (2009). Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. / Cell Metabolism, / 9, 265-76. CrossRef
    12. Papa, S., Sardanelli, A. M., Scacco, S., & Technikova-Dobrova, Z. (1999). cAMP-dependent protein kinase and phosphoproteins in mammalian mitochondria. An extension of the cAMP-mediated intracellular signal transduction. / FEBS Letters, / 444, 245-49. CrossRef
    13. Chen, J., Levin, L. R., & Buck, J. (2012). Role of soluble adenylyl cyclase in the heart. / American Journal of Physiology Heart and Circulatory Physiology, / 302, H538–H543. CrossRef
    14. Appukuttan, A., Kasseckert, S. A., Micoogullari, M., Flacke, J. P., Kumar, S., Woste, A., et al. (2012). Type 10 adenylyl cyclase mediates mitochondrial Bax translocation and apoptosis of adult rat cardiomyocytes under simulated ischaemia/reperfusion. / Cardiovascular Research, / 93, 340-49. CrossRef
    15. Nunes, A. R., Monteiro, E. C., Johnson, S. M., & Gauda, E. B. (2009). Bicarbonate-regulated soluble adenylyl cyclase (sAC) mRNA expression and activity in peripheral chemoreceptors. / Advances in Experimental Medicine and Biology, / 648, 235-41. CrossRef
    16. Cooper, D. M., & Crossthwaite, A. J. (2006). Higher-order organization and regulation of adenylyl cyclases. / Trends in Pharmacological Sciences, / 27, 426-31. CrossRef
    17. Francis, S. H., Blount, M. A., & Corbin, J. D. (2011). Mammalian cyclic nucleotide phosphodiesterases: Molecular mechanisms and physiological functions. / Physiological Reviews, / 91, 651-90. CrossRef
    18. Hebb, A. L., & Robertson, H. A. (2007). Role of phosphodiesterases in neurological and psychiatric disease. / Current Opinion in Pharmacology, / 7, 86-2. CrossRef
    19. Schudt, C., Hatzelmann, A., Beume, R., & Tenor, H. (2011). Phosphodiesterase inhibitors: History of pharmacology. / Handbook of Experimental Pharmacology, / 204, 1-6. CrossRef
    20. Corbin, J. D., & Francis, S. H. (2003). Molecular biology and pharmacology of PDE-5-inhibitor therapy for erectile dysfunction. / Journal of Andrology, / 24, S38–S41.
    21. Walsh, D. A., Perkins, J. P., & Krebs, E. G. (1968). An adenosine 3-5-monophosphate-dependant protein kinase from rabbit skeletal muscle. / Journal of Biological Chemistry, / 243, 3763-765.
    22. Zhou, M., Fisher, E. A., & Ginsberg, H. N. (1998). Regulated co-translational ubiquitination of apolipoprotein B100. A new paradigm for proteasomal degradation of a secretory protein. / Journal of Biological Chemistry, / 273, 24649-4653. CrossRef
    23. Kawasaki, H., Springett, G. M., Mochizuki, N., Toki, S., Nakaya, M., Matsuda, M., et al. (1998). A family of cAMP-binding proteins that directly activate Rap1. / Science, / 282, 2275-279. CrossRef
    24. Dwivedi, Y., & Pandey, G. N. (2011). Elucidating biological risk factors in suicide: Role of protein kinase A. / Progress in Neuro-Psychopharmacology and Biological Psychiatry, / 35, 831-41. CrossRef
    25. Cheng, X., Ma, Y., Moore, M., Hemmings, B. A., & Taylor, S. S. (1998). Phosphorylation and activation of cAMP-dependent protein kinase by phosphoinositide-dependent protein kinase. / Proceedings of the National Academy Science USA, / 95, 9849-854. CrossRef
    26. Cauthron, R. D., Carter, K. B., Liauw, S., & Steinberg, R. A. (1998). Physiological phosphorylation of protein kinase A at Thr-197 is by a protein kinase A kinase. / Molecular and Cellular Biology, / 18, 1416-423.
    27. Taylor, S. S., Buechler, J. A., & Yonemoto, W. (1990). cAMP-dependent protein kinase: Framework for a diverse family of regulatory enzymes. / Annual Review of Biochemistry, / 59, 971-005. CrossRef
    28. Hidaka, H., Watanabe, M., & Kobayashi, R. (1991). Properties and use of H-series compounds as protein kinase inhibitors. / Methods in Enzymology, / 201, 328-39. CrossRef
    29. Davies, S. P., Reddy, H., Caivano, M., & Cohen, P. (2000). Specificity and mechanism of action of some commonly used protein kinase inhibitors. / Biochemical Journal, / 351, 95-05. CrossRef
    30. Lochner, A., & Moolman, J. A. (2006). The many faces of H89: A review. / Cardiovascular Drug Reviews, / 24, 261-74. CrossRef
    31. Wolfl, S., Martinez, C., & Majzoub, J. A. (1999). Inducible binding of cyclic adenosine 3-5-monophosphate (cAMP)-responsive element binding protein (CREB) to a cAMP-responsive promoter in vivo. / Molecular Endocrinology, / 13, 659-69. CrossRef
    32. Scott, J. D., Stofko, R. E., McDonald, J. R., Comer, J. D., Vitalis, E. A., & Mangili, J. A. (1990). Type II regulatory subunit dimerization determines the subcellular localization of the cAMP-dependent protein kinase. / Journal of Biological Chemistry, / 265, 21561-1566.
    33. Silva, A. J., Kogan, J. H., Frankland, P. W., & Kida, S. (1998). CREB and memory. / Annual Review of Neuroscience, / 21, 127-48. CrossRef
    34. Springett, G. M., Kawasaki, H., & Spriggs, D. R. (2004). Non-kinase second-messenger signaling: New pathways with new promise. / BioEssays, / 26, 730-38. CrossRef
    35. de Rooij, J., Rehmann, H., van Triest, M., Cool, R. H., Wittinghofer, A., & Bos, J. L. (2000). Mechanism of regulation of the Epac family of cAMP-dependent RapGEFs. / Journal of Biological Chemistry, / 275, 20829-0836. CrossRef
    36. Bos, J. L., Rehmann, H., & Wittinghofer, A. (2007). GEFs and GAPs: Critical elements in the control of small G proteins. / Cell, / 129, 865-77. CrossRef
    37. Gloerich, M., & Bos, J. L. (2010). Epac: Defining a new mechanism for cAMP action. / Annual Review of Pharmacology and Toxicology, / 50, 355-75. CrossRef
    38. Rehmann, H., Das, J., Knipscheer, P., Wittinghofer, A., & Bos, J. L. (2006). Structure of the cyclic-AMP-responsive exchange factor Epac2 in its auto-inhibited state. / Nature, / 439, 625-28. CrossRef
    39. Rehmann, H., rias-Palomo, E., Hadders, M. A., Schwede, F., Llorca, O., & Bos, J. L. (2008). Structure of Epac2 in complex with a cyclic AMP analogue and RAP1B. / Nature, / 455, 124-27. CrossRef
    40. Feliciello, A., Gottesman, M. E., & Avvedimento, E. V. (2001). The biological functions of A-kinase anchor proteins. / Journal of Molecular Biology, / 308, 99-14. CrossRef
    41. Skroblin, P., Grossmann, S., Schafer, G., Rosenthal, W., & Klussmann, E. (2010). Mechanisms of protein kinase A anchoring. / International Review of Cell Molecular Biology, / 283, 235-30. CrossRef
    42. Carnegie, G. K., Means, C. K., & Scott, J. D. (2009). A-kinase anchoring proteins: From protein complexes to physiology and disease. / IUBMB Life, / 61, 394-06. CrossRef
    43. Dessauer, C. W. (2009). Adenylyl cyclase—A-kinase anchoring protein complexes: The next dimension in cAMP signaling. / Molecular Pharmacology, / 76, 935-41. CrossRef
    44. Scott, J. D., Dessauer, C. W., & Tasken, K. (2013). Creating order from chaos: Cellular regulation by kinase anchoring. / Annual Review of Pharmacology and Toxicology, / 53, 187-10. CrossRef
    45. Pidoux, G., & Tasken, K. (2010). Specificity and spatial dynamics of protein kinase A signaling organized by A-kinase-anchoring proteins. / Journal of Molecular Endocrinology, / 44, 271-84. CrossRef
    46. Hundsrucker, C., & Klussmann, E. (2008). Direct AKAP-mediated protein–protein interactions as potential drug targets. / Handbook of Experimental Pharmacology, / 186, 483-03. CrossRef
    47. Troger, J., Moutty, M. C., Skroblin, P., & Klussmann, E. (2012). A-kinase anchoring proteins as potential drug targets. / British Journal of Pharmacology, / 166, 420-33. CrossRef
    48. Kovanich, D., Aye, T. T., Heck, A. J., & Scholten, A. (2012). Probing the specificity of protein–protein interactions by quantitative chemical proteomics. / Methods in Molecular Biology, / 803, 167-81. CrossRef
    49. Vaudry, D., Falluel-Morel, A., Bourgault, S., Basille, M., Burel, D., Wurtz, O., et al. (2009). Pituitary adenylate cyclase-activating polypeptide and its receptors: 20?years after the discovery. / Pharmacological Reviews, / 61, 283-57. CrossRef
    50. Shneider, Y., Shtrauss, Y., Yadid, G., & Pinhasov, A. (2010). Differential expression of PACAP receptors in postnatal rat brain. / Neuropeptides, / 44, 509-14. CrossRef
    51. Eiden, L. E., Samal, B., Gerdin, M. J., Mustafa, T., Vaudry, D., & Stroth, N. (2008). Discovery of pituitary adenylate cyclase-activating polypeptide-regulated genes through microarray analyses in cell culture and in vivo. / Annals of the New York Academy of Sciences, / 1144, 6-0. CrossRef
    52. Gasperini, L., Piubelli, C., & Carboni, L. (2012). Proteomics of rat hypothalamus, hippocampus and pre-frontal/frontal cortex after central administration of the neuropeptide PACAP. / Molecular Biology Reports, / 39, 2921-935. CrossRef
    53. Holighaus, Y., Weihe, E., & Eiden, L. E. (2012). STC1 induction by PACAP is mediated through cAMP and ERK1/2 but not PKA in cultured cortical neurons. / Journal of Molecular Neuroscience, / 46, 75-7. CrossRef
    54. Nakamachi, T., Li, M., Shioda, S., & Arimura, A. (2006). Signaling involved in pituitary adenylate cyclase-activating polypeptide-stimulated ADNP expression. / Peptides, / 27, 1859-864. CrossRef
    55. Reglodi, D., Kiss, P., Lubics, A., & Tamas, A. (2011). Review on the protective effects of PACAP in models of neurodegenerative diseases in vitro and in vivo. / Current Pharmaceutical Design, / 17, 962-72. CrossRef
    56. Wu, K. Y., Zippin, J. H., Huron, D. R., Kamenetsky, M., Hengst, U., Buck, J., et al. (2006). Soluble adenylyl cyclase is required for netrin-1 signaling in nerve growth cones. / Nature Neuroscience, / 9, 1257-264. CrossRef
    57. Rat, D., Schmitt, U., Tippmann, F., Dewachter, I., Theunis, C., Wieczerzak, E., et al. (2011). Neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) slows down Alzheimer’s disease-like pathology in amyloid precursor protein-transgenic mice. / FASEB Journal, / 25, 3208-218. CrossRef
    58. Fang, K. M., Chen, J. K., Hung, S. C., Chen, M. C., Wu, Y. T., Wu, T. J., et al. (2010). Effects of combinatorial treatment with pituitary adenylate cyclase activating peptide and human mesenchymal stem cells on spinal cord tissue repair. / PLoS ONE, / 5, e15299. CrossRef
    59. Tomimatsu, N., & Arakawa, Y. (2008). Survival-promoting activity of pituitary adenylate cyclase-activating polypeptide in the presence of phosphodiesterase inhibitors on rat motoneurons in culture: cAMP-protein kinase A-mediated survival. / Journal of Neurochemistry, / 107, 628-35. CrossRef
    60. Endo, K., Nakamachi, T., Seki, T., Kagami, N., Wada, Y., Nakamura, K., et al. (2011). Neuroprotective effect of PACAP against NMDA-induced retinal damage in the mouse. / Journal of Molecular Neuroscience, / 43, 22-9. CrossRef
    61. Botia, B., Jolivel, V., Burel, D., Le Joncour, V., Roy, V., Naassila, M., et al. (2011). Neuroprotective effects of PACAP against ethanol-induced toxicity in the developing rat cerebellum. / Neurotoxicity Research, / 19, 423-34. CrossRef
    62. Cameron, D. B., Raoult, E., Galas, L., Jiang, Y., Lee, K., Hu, T., et al. (2009). Role of PACAP in controlling granule cell migration. / Cerebellum, / 8, 433-40. CrossRef
    63. Falluel-Morel, A., Tascau, L. I., Sokolowski, K., Brabet, P., & Cicco-Bloom, E. (2008). Granule cell survival is deficient in PAC1??/sup> mutant cerebellum. / Journal of Molecular Neuroscience, / 36, 38-4. CrossRef
    64. Ago, Y., Yoneyama, M., Ishihama, T., Kataoka, S., Kawada, K., Tanaka, T., et al. (2011). Role of endogenous pituitary adenylate cyclase-activating polypeptide in adult hippocampal neurogenesis. / Neuroscience, / 172, 554-61. CrossRef
    65. Scharf, E., May, V., Braas, K. M., Shutz, K. C., & Mao-Draayer, Y. (2008). Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) regulate murine neural progenitor cell survival, proliferation, and differentiation. / Journal of Molecular Neuroscience, / 36, 79-8. CrossRef
    66. Masmoudi-Kouki, O., Douiri, S., Hamdi, Y., Kaddour, H., Bahdoudi, S., Vaudry, D., et al. (2011). Pituitary adenylate cyclase-activating polypeptide protects astroglial cells against oxidative stress-induced apoptosis. / Journal of Neurochemistry, / 117, 403-11. CrossRef
    67. Castorina, A., Tiralongo, A., Giunta, S., Carnazza, M. L., Rasi, G., & D’Agata, V. (2008). PACAP and VIP prevent apoptosis in schwannoma cells. / Brain Research, / 1241, 29-5. CrossRef
    68. Yang, S., Yang, J., Yang, Z., Chen, P., Fraser, A., Zhang, W., et al. (2006). Pituitary adenylate cyclase-activating polypeptide (PACAP) 38 and PACAP4- are neuroprotective through inhibition of NADPH oxidase: Potent regulators of microglia-mediated oxidative stress. / Journal of Pharmacology and Experimental Therapeutics, / 319, 595-03. CrossRef
    69. Dejda, A., Seaborn, T., Bourgault, S., Touzani, O., Fournier, A., Vaudry, H., et al. (2011). PACAP and a novel stable analog protect rat brain from ischemia: Insight into the mechanisms of action. / Peptides, / 32, 1207-216. CrossRef
    70. Doan, N. D., Bourgault, S., Dejda, A., Letourneau, M., Detheux, M., Vaudry, D., et al. (2011). Design and in vitro characterization of PAC1/VPAC1-selective agonists with potent neuroprotective effects. / Biochemical Pharmacology, / 81, 552-61. CrossRef
    71. Bourgault, S., Vaudry, D., Segalas-Milazzo, I., Guilhaudis, L., Couvineau, A., Laburthe, M., et al. (2009). Molecular and conformational determinants of pituitary adenylate cyclase-activating polypeptide (PACAP) for activation of the PAC1 receptor. / Journal of Medicinal Chemistry, / 52, 3308-316. CrossRef
    72. Bourgault, S., Vaudry, D., Guilhaudis, L., Raoult, E., Couvineau, A., Laburthe, M., et al. (2008). Biological and structural analysis of truncated analogs of PACAP27. / Journal of Molecular Neuroscience, / 36, 260-69. CrossRef
    73. Iwatsubo, K., Okumura, S., & Ishikawa, Y. (2006). Drug therapy aimed at adenylyl cyclase to regulate cyclic nucleotide signaling. / Endocrine, Metabolic & Immune Disorders Drug Targets, / 6, 239-47. CrossRef
    74. Insel, P. A., & Ostrom, R. S. (2003). Forskolin as a tool for examining adenylyl cyclase expression, regulation, and G protein signaling. / Cellular and Molecular Neurobiology, / 23, 305-14. CrossRef
    75. Maruoka, H., Sasaya, H., Sugihara, K., Shimoke, K., & Ikeuchi, T. (2011). Low-molecular-weight compounds having neurotrophic activity in cultured PC12 cells and neurons. / Journal of Biochemistry, / 150, 473-75. CrossRef
    76. Tegenge, M. A., Stern, M., & Bicker, G. (2009). Nitric oxide and cyclic nucleotide signal transduction modulates synaptic vesicle turnover in human model neurons. / Journal of Neurochemistry, / 111, 1434-446. CrossRef
    77. Tegenge, M. A., Roloff, F., & Bicker, G. (2011). Rapid differentiation of human embryonal carcinoma stem cells (NT2) into neurons for neurite outgrowth analysis. / Cellular and Molecular Neurobiology, / 31, 635-43. CrossRef
    78. Hannila, S. S., & Filbin, M. T. (2008). The role of cyclic AMP signaling in promoting axonal regeneration after spinal cord injury. / Experimental Neurology, / 209, 321-32. CrossRef
    79. Posternak, T., Sutherland, E. W., & Henion, W. F. (1962). Derivatives of cyclic 3-5-adenosine monophosphate. / Biochimica et Biophysica Acta, / 65, 558-60. CrossRef
    80. Schwede, F., Maronde, E., Genieser, H., & Jastorff, B. (2000). Cyclic nucleotide analogs as biochemical tools and prospective drugs. / Pharmacology & Therapeutics, / 87, 199-26. CrossRef
    81. Szentandrassy, N., Harmati, G., Farkas, V., Horvath, B., Hegyi, B., Magyar, J., et al. (2011). Modified cAMP derivatives: Powerful tools in heart research. / Current Medicinal Chemistry, / 18, 3729-736. CrossRef
    82. Jastorff, B., Hoppe, J., & Morr, M. (1979). A model for the chemical interactions of adenosine 3-5-Monophosphate with the R subunit of protein kinase type I. Refinement of the cyclic phosphate binding moiety of protein kinase type I. / European Journal of Biochemistry, / 101, 555-61. CrossRef
    83. Krass, J. D., Jastorff, B., & Genieser, H. G. (1997). Determination of lipophilicity by gradient elution high-performance liquid chromatography. / Analytical Chemistry, / 69, 2575-581. CrossRef
    84. Bertinetti, D., Schweinsberg, S., Hanke, S. E., Schwede, F., Bertinetti, O., Drewianka, S., et al. (2009). Chemical tools selectively target components of the PKA system. / BMC Chemical Biology, / 9, 3. CrossRef
    85. Grandoch, M., Roscioni, S. S., & Schmidt, M. (2010). The role of Epac proteins, novel cAMP mediators, in the regulation of immune, lung and neuronal function. / British Journal of Pharmacology, / 159, 265-84. CrossRef
    86. Enserink, J. M., Christensen, A. E., de Rooij, J., van Triest, M., Schwede, F., Genieser, H. G., et al. (2002). A novel Epac-specific cAMP analogue demonstrates independent regulation of Rap1 and ERK. / Nature Cell Biology, / 4, 901-06. CrossRef
    87. Rehmann, H., Schwede, F., Doskeland, S. O., Wittinghofer, A., & Bos, J. L. (2003). Ligand-mediated activation of the cAMP-responsive guanine nucleotide exchange factor Epac. / Journal of Biological Chemistry, / 278, 38548-8556. CrossRef
    88. Holz, G. G., Chepurny, O. G., & Schwede, F. (2008). Epac-selective cAMP analogs: New tools with which to evaluate the signal transduction properties of cAMP-regulated guanine nucleotide exchange factors. / Cellular Signalling, / 20, 10-0. CrossRef
    89. McPhee, I., Gibson, L. C., Kewney, J., Darroch, C., Stevens, P. A., Spinks, D., et al. (2005). Cyclic nucleotide signalling: A molecular approach to drug discovery for Alzheimer’s disease. / Biochemical Society Transactions, / 33, 1330-332. CrossRef
    90. Borner, S., Schwede, F., Schlipp, A., Berisha, F., Calebiro, D., Lohse, M. J., et al. (2011). FRET measurements of intracellular cAMP concentrations and cAMP analog permeability in intact cells. / Nature Protocols, / 6, 427-38. CrossRef
    91. Breckler, M., Berthouze, M., Laurent, A. C., Crozatier, B., Morel, E., & Lezoualc’h, F. (2011). Rap-linked cAMP signaling Epac proteins: Compartmentation, functioning and disease implications. / Cellular Signalling, / 23, 1257-266. CrossRef
    92. Bos, J. L. (2006). Epac proteins: Multi-purpose cAMP targets. / Trends in Biochemical Sciences, / 31, 680-86. CrossRef
    93. Ster, J., De, B. F., Bertaso, F., Abitbol, K., Daniel, H., Bockaert, J., et al. (2009). Epac mediates PACAP-dependent long-term depression in the hippocampus. / Journal of Physiology, / 587, 101-13. CrossRef
    94. Morales-Garcia, J. A., Redondo, M., onso-Gil, S., Gil, C., Perez, C., Martinez, A., et al. (2011). Phosphodiesterase 7 inhibition preserves dopaminergic neurons in cellular and rodent models of Parkinson disease. / PLoS ONE, / 6, e17240. CrossRef
    95. Yang, L., Calingasan, N. Y., Lorenzo, B. J., & Beal, M. F. (2008). Attenuation of MPTP neurotoxicity by rolipram, a specific inhibitor of phosphodiesterase IV. / Experimental Neurology, / 211, 311-14. CrossRef
    96. Sasaki, T., Kitagawa, K., Omura-Matsuoka, E., Todo, K., Terasaki, Y., Sugiura, S., et al. (2007). The phosphodiesterase inhibitor rolipram promotes survival of newborn hippocampal neurons after ischemia. / Stroke, / 38, 1597-605. CrossRef
    97. Farooq, M. U., Naravetla, B., Moore, P. W., Majid, A., Gupta, R., & Kassab, M. Y. (2008). Role of sildenafil in neurological disorders. / Clinical Neuropharmacology, / 31, 353-62. CrossRef
    98. Jiang, H., Nucifora, F. C, Jr, Ross, C. A., & DeFranco, D. B. (2003). Cell death triggered by polyglutamine-expanded huntingtin in a neuronal cell line is associated with degradation of CREB-binding protein. / Human Molecular Genetics, / 12, 1-2. CrossRef
    99. Nucifora, F. C, Jr, Sasaki, M., Peters, M. F., Huang, H., Cooper, J. K., Yamada, M., et al. (2001). Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. / Science, / 291, 2423-428. CrossRef
    100. Steffan, J. S., Bodai, L., Pallos, J., Poelman, M., McCampbell, A., Apostol, B. L., et al. (2001). Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. / Nature, / 413, 739-43. CrossRef
    101. Castro, L. R., Gervasi, N., Guiot, E., Cavellini, L., Nikolaev, V. O., Paupardin-Tritsch, D., et al. (2010). Type 4 phosphodiesterase plays different integrating roles in different cellular domains in pyramidal cortical neurons. / Journal of Neuroscience, / 30, 6143-151. CrossRef
    102. DeMarch, Z., Giampa, C., Patassini, S., Martorana, A., Bernardi, G., & Fusco, F. R. (2007). Beneficial effects of rolipram in a quinolinic acid model of striatal excitotoxicity. / Neurobiology of Diseases, / 25, 266-73. CrossRef
    103. Giampa, C., Middei, S., Patassini, S., Borreca, A., Marullo, F., Laurenti, D., et al. (2009). Phosphodiesterase type IV inhibition prevents sequestration of CREB binding protein, protects striatal parvalbumin interneurons and rescues motor deficits in the R6/2 mouse model of Huntington’s disease. / European Journal of Neuroscience, / 29, 902-10. CrossRef
    104. DeMarch, Z., Giampa, C., Patassini, S., Bernardi, G., & Fusco, F. R. (2008). Beneficial effects of rolipram in the R6/2 mouse model of Huntington’s disease. / Neurobiology of Diseases, / 30, 375-87. CrossRef
    105. Giampa, C., Laurenti, D., Anzilotti, S., Bernardi, G., Menniti, F. S., & Fusco, F. R. (2010). Inhibition of the striatal specific phosphodiesterase PDE10A ameliorates striatal and cortical pathology in R6/2 mouse model of Huntington’s disease. / PLoS ONE, / 5, e13417. CrossRef
    106. Nijholt, D. A., De Kimpe, L., Elfrink, H. L., Hoozemans, J. J., & Scheper, W. (2011). Removing protein aggregates: The role of proteolysis in neurodegeneration. / Current Medicinal Chemistry, / 18, 2459-476. CrossRef
    107. Huang, Q., & Figueiredo-Pereira, M. E. (2010). Ubiquitin/proteasome pathway impairment in neurodegeneration: Therapeutic implications. / Apoptosis, / 15, 1292-311. CrossRef
    108. Wang, X., Li, J., Zheng, H., Su, H., & Powell, S. R. (2011). Proteasome functional insufficiency in cardiac pathogenesis. / American Journal of Physiology Heart and Circulatory Physiology, / 301, H2207–H2219. CrossRef
    109. Rideout, H. J., Larsen, K. E., Sulzer, D., & Stefanis, L. (2001). Proteasomal inhibition leads to formation of ubiquitin/alpha-synuclein-immunoreactive inclusions in PC12 cells. / Journal of Neurochemistry, / 78, 899-08. CrossRef
    110. Metcalfe, M. J., Huang, Q., & Figueiredo-Pereira, M. E. (2012). Coordination between proteasome impairment and caspase activation leading to TAU pathology: Neuroprotection by cAMP. / Cell Death and Disease, / 3, e326. CrossRef
    111. Myeku, N., Wang, H., & Figueiredo-Pereira, M. E. (2012). cAMP stimulates the ubiquitin/proteasome pathway in rat spinal cord neurons. / Neuroscience Letters, / 527, 126-31. CrossRef
    112. Houslay, M. D., & Christian, F. (2010). p62 (SQSTM1) forms part of a novel, reversible aggregate containing a specific conformer of the cAMP degrading phosphodiesterase, PDE4A4. / Autophagy, / 6, 1198-200. CrossRef
    113. Drews, O., Tsukamoto, O., Liem, D., Streicher, J., Wang, Y., & Ping, P. (2010). Differential regulation of proteasome function in isoproterenol-induced cardiac hypertrophy. / Circulation Research, / 107, 1094-101. CrossRef
    114. Asai, M., Tsukamoto, O., Minamino, T., Asanuma, H., Fujita, M., Asano, Y., et al. (2009). PKA rapidly enhances proteasome assembly and activity in in vivo canine hearts. / Journal of Molecular and Cellular Cardiology, / 46, 452-62. CrossRef
    115. Zong, C., Gomes, A. V., Drews, O., Li, X., Young, G. W., Berhane, B., et al. (2006). Regulation of murine cardiac 20S proteasomes: Role of associating partners. / Circulation Research, / 99, 372-80. CrossRef
    116. Lu, H., Zong, C., Wang, Y., Young, G. W., Deng, N., Souda, P., et al. (2008). Revealing the dynamics of the 20S proteasome phosphoproteome: A combined CID and electron transfer dissociation approach. / Molecular and Cellular Proteomics, / 7, 2073-089. CrossRef
    117. Shao, W., Yu, Z., Fantus, I. G., & Jin, T. (2010). Cyclic AMP signaling stimulates proteasome degradation of thioredoxin interacting protein (TxNIP) in pancreatic beta-cells. / Cellular Signalling, / 22, 1240-246. CrossRef
    118. Hanna, J., & Finley, D. (2007). A proteasome for all occasions. / FEBS Letters, / 581, 2854-861. CrossRef
    119. Zhang, F., Paterson, A. J., Huang, P., Wang, K., & Kudlow, J. E. (2007). Metabolic control of proteasome function. / Physiology (Bethesda), / 22, 373-79. CrossRef
    120. Pereira, M. E., & Wilk, S. (1990). Phosphorylation of the multicatalytic proteinase complex from bovine pituitaries by a copurifying cAMP-dependent protein kinase. / Archives of Biochemistry and Biophysics, / 283, 68-4. CrossRef
    121. Marambaud, P., Wilk, S., & Checler, F. (1996). Protein kinase A phosphorylation of the proteasome: A contribution to the alpha-secretase pathway in human cells. / Journal of Neurochemistry, / 67, 2616-619. CrossRef
    122. Zhang, F., Hu, Y., Huang, P., Toleman, C. A., Paterson, A. J., & Kudlow, J. E. (2007). Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6. / Journal of Biological Chemistry, / 282, 22460-2471. CrossRef
    123. Goncalves, D. A., Lira, E. C., Baviera, A. M., Cao, P., Zanon, N. M., Arany, Z., et al. (2009). Mechanisms involved in 3-5-cyclic adenosine monophosphate-mediated inhibition of the ubiquitin-proteasome system in skeletal muscle. / Endocrinology, / 150, 5395-404. CrossRef
    124. Lira, E. C., Goncalves, D. A., Parreiras-E-Silva, L. T., Zanon, N. M., Kettelhut, I. C., & Navegantes, L. C. (2011). Phosphodiesterase-4 inhibition reduces proteolysis and atrogenes expression in rat skeletal muscles. / Muscle and Nerve, / 44, 371-81.
    125. Carlucci, A., Lignitto, L., & Feliciello, A. (2008). Control of mitochondria dynamics and oxidative metabolism by cAMP, AKAPs and the proteasome. / Trends in Cell Biology, / 18, 604-13. CrossRef
    126. Edelmann, M. J., Nicholson, B., & Kessler, B. M. (2011). Pharmacological targets in the ubiquitin system offer new ways of treating cancer, neurodegenerative disorders and infectious diseases. / Expert Reviews in Molecular Medicine, / 13, e35. CrossRef
  • 作者单位:He Huang (1)
    Hu Wang (1)
    Maria E. Figueiredo-Pereira (1)

    1. Department of Biological Sciences, Hunter College and Graduate Center, City University of New York, 695 Park Avenue, New York, NY, 10065, USA
文摘
The cAMP-signaling pathway has been under intensive investigation for decades. It is a wonder that such a small simple molecule like cAMP can modulate a vast number of diverse processes in different types of cells. The ubiquitous involvement of cAMP-signaling in a variety of cellular events requires tight spatial and temporal control of its generation, propagation, compartmentalization, and elimination. Among the various steps of the cAMP-signaling pathway, G-protein-coupled receptors, adenylate cyclases, phosphodiesterases, the two major cAMP targets, i.e., protein kinase A and exchange protein activated by cAMP, as well as the A-kinase anchoring proteins, are potential targets for drug development. Herein we review the recent progress on the regulation and manipulation of different steps of the cAMP-signaling pathway. We end by focusing on the emerging role of cAMP-signaling in modulating protein degradation via the ubiquitin/proteasome pathway. New discoveries on the regulation of the ubiquitin/proteasome pathway by cAMP-signaling support the development of new therapeutic approaches to prevent proteotoxicity in chronic neurodegenerative disorders and other human disease conditions associated with impaired protein turnover by the ubiquitin/proteasome pathway and the accumulation of ubiquitin–protein aggregates.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.