POD Preprocessing of IR Thermal Data to Assess Heat Source Distributions
详细信息    查看全文
  • 作者:N. Ranc (1)
    A. Blanche (2)
    D. Ryckelynck (3)
    A. Chrysochoos (2)

    1. Laboratoire PIMM
    ; UMR CNRS 8006 ; Arts et M茅tiers ParisTech ; 151 Boulevard de l鈥橦么pital ; 75013 ; Paris ; France
    2. LMGC
    ; UMR CNRS 5508 ; CC 048 ; Universit茅 Montpellier 2 ; Place Eug猫ne Bataillon ; 34095 ; Montpellier Cedex 05 ; France
    3. Centre des mat茅riaux
    ; UMR CNRS 7633 ; Mines ParisTech ; 10 rue Henry Desbrueres ; BP 87 ; 91003 ; Evry Cedex ; France
  • 关键词:Infrared thermography ; Quantitive image processing ; Dissipation fields ; Thermomechanical couplings ; Behavior modeling ; Proper orthogonal decompsition
  • 刊名:Experimental Mechanics
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:55
  • 期:4
  • 页码:725-739
  • 全文大小:1,665 KB
  • 参考文献:1. Bathias C, Paris P (2005) Gigacycle fatigue in mechanical practice. Marcel Dekker
    2. Batsale C, Chrysochoos A, Pron H, Wattrisse B (2013) Thermomechanical analysis of material behaviors, chap. 16 Measurements and Identification in Solid Mechanics. ISBN 978-1-84821-294-7
    3. Berkoz, G, Holmes, P, Lumley, JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid. Mech. 25: pp. 539-575 CrossRef
    4. Berthel, B, Chrysochoos, A, Wattrisse, B, Galtier, A (2008) Infrared image processing for the calorimetric analysis of fatigue phenomena. Exp. Mech. 48: pp. 79-90 CrossRef
    5. Boulanger, T, Chrysochoos, A, Mabru, C, Galtier, A (2004) Calorimetric analysis of dissipative and thermoelastic effects associated with the fatigue behavior of steels. Int. J. Fatigue 26: pp. 221-229 CrossRef
    6. Carlberg K, Cortial J, Amsallem D, Zahr M, Farhat C (2011) The gnat nonlinear model reduction method and its application to fluid dynamics problems. In: 6th AIAA theoretical fluid mechanics conference. Honolulu pp 2011鈥?112
    7. Chaturantabut S, Sorensen DC (2010) Nonlinear model reduction via discrete empirical interpolation. In: Proceedings of the 48h IEEE conference on decision and control CDC held jointly with 2009, 28th Chinese control conference, vol 32. IEEE, pp 2737鈥?764
    8. Chrysochoos A (1995) Analyse du comportement thermom茅canique des mat茅riaux par thermographie infrarouge. In: Eyrolles (ed) Photom茅canique vol 95, pp 203鈥?11
    9. Chrysochoos, A (2012) Infrared thermography applied to the analysis of material behavior: a brief overview. Qirt J. 9: pp. 193-208 CrossRef
    10. Chrysochoos, A, Louche, H (2000) An infrared image processing to analyse the calorific effects accompanying strain localisation. Int. J. Eng. Sci. 38: pp. 1759-1788 CrossRef
    11. Chrysochoos, A, Wattrisse, B, Muracciole, JM, El Kaim, YE (2009) Fields of stored energy associated with localized necking of steel. J. Mech. Mater. Struct. 4: pp. 245-262 CrossRef
    12. Dauvergne, JL, Del Barrio, E (2010) Toward a simulation-free pod approach for low-dimensional description of phase-change problems. Int. J. Therm. Sci. 49: pp. 1369-1382 CrossRef
    13. del Barrio, EP, Dauvergne, JL (2011) Karhunen-Lo猫ve decomposition for data, noise, and model reduction in inverse problems. pp 507鈥?39. Taylor & Francis Group, New York
    14. Doudard, C, Calloch, S, Hild, F, Roux, S (2010) Identification of heat source fields from infrared thermography: determination of 鈥檚elf-heating鈥?in a dual-phase steel by using a dog bone sample. Mech. Mater. 42: pp. 55-62 CrossRef
    15. Everson, R, Sirovich, L (1995) Karhunen-loeve procedure for gappy data. J. Opt. Soc. Am. A 12: pp. 1657-1664 CrossRef
    16. Fudym, O, Batsale, J, Battaglia, J (2013) Thermophysical properties mapping in semi-infinite longitudinally cracked plates by temperature image processing. Inverse Prob. Eng. 15: pp. 163-176 CrossRef
    17. Fudym, O, Batsale, J, Leconte, D (2002) A seminumerical approach for heat diffusion in heterogeneous media, one extension of the analytical quadrupole method. Numer. Heat Trans. Part B 42: pp. 325-348 CrossRef
    18. Galbally, D, Fidkowski, K, Willcox, K, Ghattas, O (2010) Non-linear model reduction for uncertainty quantification in large-scale inverse problems. Int. J. Numer. Methods Eng. 81: pp. 1581-1608
    19. Holmes P, Lumley J, Berkoz G (1996) Turbulence, coherent structures, dynamical systems and symmetry. Cambridge Monographs on Mechanics. Cambridge University Press
    20. Hotteling, H (1946) Analysis of complex statistical variables into principal components. Ann. Acad. Sci. Fenn. A1: pp. 3-79
    21. Karhunen, K (1946) Uber lineare methoden in der wahrscheinlichkeitsrechnung. Ann. Acad. Sci. Fenn A1: pp. 3-79
    22. Lo猫ve MM (1955) Probability theory. Princeton
    23. Lumley JL (1967) The structure of inhomogeneous turbulence. In: Yaglom T (ed) Atmospheric turbulence and radio wave propagation. Nauka Press, Moscow, pp 166鈥?78
    24. Nayroles, B, Bouc, R, Caumon, H, Chezeaux, JC, Giacometti, E (1981) Infrared telethermography and structures mechanics. Int. J. Eng. Sci. 19: pp. 929-947 CrossRef
    25. Park, HM, Lee, JH (1998) A method of solving inverse convection problems by means of mode reduction. Chem. End. Sci. 53: pp. 1731-1744 CrossRef
    26. Poncelet, M, Witz, JF, Pron, H, Wattrisse, B (2011) A study of irfpa camera measurement errors: radiometric artefacts. Qirt J. 8: pp. 3-20 CrossRef
    27. Ryckelynck, D (2005) A priori hypereduction method: an adaptive approach. J. Comput. Phys. 202: pp. 346-366 CrossRef
    28. Ryckelynck, D (2009) Hyper-reduction of mechanical models involving internal variables. Int. J. Numer. Methods Eng. 77: pp. 75-89 CrossRef
    29. Wang, C, Blanche, A, Wagner, D, Chrysochoos, A, Bathias, C (2014) Dissipative and microstructural effects associated with fatigue crack initiation on an armco iron. Int J Fatigue 58: pp. 152-157 CrossRef
    30. Willcox, K (2006) Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition. Comput. Fluids 35: pp. 208-226 CrossRef
  • 刊物类别:Engineering
  • 刊物主题:Mechanical Engineering
    Theoretical and Applied Mechanics
    Characterization and Evaluation Materials
    Structural Mechanics
    Engineering Fluid Dynamics
    Engineering Design
  • 出版者:Springer Boston
  • ISSN:1741-2765
文摘
Infrared thermography is a useful imaging technique for analyzing the thermomechanical behaviour of materials. It allows, under certain conditions, surface temperature monitoring and, via a diffusion model, estimation of heat sources induced by dissipative and/or thermally coupled deformation mechanisms. However, the noisy and discrete character of thermal data, the regularizing effect of heat diffusion and heat exchanges with the surroundings complicate the passage from temperature to heat source. The aim of this paper is to show that the prior use of reduced-basis projection of thermal data improves the signal-to-noise ratio before estimating the heat source distributions. The reduced basis is generated by proper orthogonal decomposition (POD) of physically-admissible thermal fields. These fields are solutions of ideal diffusion problems related to a set of putative heat sources. preprocessing is applied to different direct methods (finite differences, spectral solution, local least-squares fitting) already used in the past. The gain of this preprocessing is determined using a numerical penalizing benchmark test. The methods are finally compared using data extracted from a dynamic cyclic test on a pure copper specimen.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.