A Modular Self-Reconfigurable Robot with Enhanced Locomotion Performances: Design, Modeling, Simulations, and Experiments
详细信息    查看全文
  • 作者:Ying Zhang ; Guangming Song ; Shengsong Liu…
  • 关键词:Modular robot ; Self ; reconfigurable robot ; Locomotion analysis ; Omnidirectional wheels
  • 刊名:Journal of Intelligent and Robotic Systems
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:81
  • 期:3-4
  • 页码:377-393
  • 全文大小:6,018 KB
  • 参考文献:1.Rus, D., Butler, Z., Kotay, K., Vona, M.: Self-reconfiguring robots. Commun. ACM 45(3), 39–45 (2002)CrossRef
    2.Christensena, D., Schultzb, U., Stoy, K.: A distributed and morphology- independent strategy for adaptive locomotion in self-reconfigurable modular robots. Robot. Auton. Syst. 61(9), 1021–1035 (2013)CrossRef
    3.Fei, Y., Wang, C.: Self-repairing algorithm of lattice-type self- reconfigurable modular robots. J. Intell. Robot. Syst 75(2), 193–203 (2014)CrossRef
    4.Moubarak, P., Ben-Tzvi, P.: Modular and reconfigurable mobile robotics. Robot. Auton. Syst 60(12), 1648–1663 (2012)CrossRef
    5.Fukuda, T., Nakagawa, S.: Dynamic reconfigurable robotic system. In: Proceeding of IEEE international conference on robotics and automation, pp. 1581–1586. Philadelphia (1988)
    6.Støy, K., Brandt, D., Christensen, D.: Self-reconfigurable robots: an introduction. MIT Press, Cambridge (2010)
    7.Wei, H., Cai, Y., Li, H., Li, D., Wang, T.: Sambot self-assembly modular robot for swarm robot. In: Proceeding of IEEE international conference on robotics and automation, pp. 66–71. Anchorage (2010)
    8.Yim, M., Duff, D., Roufas, K.: PolyBot: a modular reconfigurable robot, pp 514–520. IEEE International Conference on Robotics and Automation, San Francisco (2000)
    9.Park, M., Yim, M.: Distributed control and communication fault tolerance for the Ckbot. In: Proceeding of ASME/IFToMM international conference on reconfigurable mechanisms and robots, pp. 682–688. London (2009)
    10.Yim, M., Shen, W., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., Chirikjian, G.: Modular self-reconfigurable robot systems. IEEE Robot. Autom. Mag. 14(1), 43–52 (2007)CrossRef
    11.Yoshida, E., Murata, S., Kamimur, A., Tomita, K., Kurokawa, H., Kokaji, S.: A motion planning method for a self-reconfigurable modular robot. In: Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 590–597. Maui (2001)
    12.Kurokawa, H., Tomita, K., Kamimura, A., Kokaji, S., Hasuo, T., Murata, S.: Self-reconfigurable modular robot M-TRAN: distributed control and communication. In: Proceeding of IEEE international conference on robot communication and coordination, pp. 21–28. Athens (2007)
    13.Murata, S., Kakomura, K., Kurokawa, H.: Toward a scalable modular robotic system - navigation, docking, and integration of M-TRAN. IEEE Robot. Autom. Mag. 14(3), 56–63 (2008)
    14.Shen, W., Krivokon, M., Chiu, H., Everist, J., Rubenstein, M., Venkatesh, J.: Mulimode locomotion via SuperBot reconfigurable robots. Auton. Robot 20(2), 165–177 (2006)CrossRef
    15.Salemi, B., Moll, M., Shen, W.: SUPERBOT: a deployable, multi-functional, and modular self-reconfigurable robotic system. In: Proceeding of IEEE international conference on intelligent robots and systems, pp. 3636–3641. Beijing (2006)
    16.Hou, F., Shen, W.: Graph-based optimal reconfiguration planning for self-reconfigurable robots. Robot. Auton. Syst. 62(7), 1047–1059 (2014)CrossRef
    17.Korayem, M., Rostam, T., Nakhai, A.: Design, modelling and errors measurement of wheeled mobile robots. Int. J. Adv. Manuf. Technol. 28(3–4), 403–416 (2006)CrossRef
    18.Huang, H., Tsai, C.: Adaptive robust control of an omnidirectional mobile platform for autonomous service robots in polar coordinates. J. Intell. Robot. Syst. 51(3), 439–460 (2008)CrossRef
    19.Sedat, N., Erkmen, A.: A fractal conductivity-based approach to mobile sensor networks in a potential field. Int. J. Adv. Manuf. Technol. 37(7-8), 732–746 (2008)CrossRef
    20.Ryland, G., Cheng, H.: Design of iMobot, an intelligent reconfigurable mobile robot with novel locomotion. In: Proceeding of IEEE international conference on robotics and automation, pp. 60–65. Anchorage (2010)
    21.Davey, J., Kwok, N., Yim, M.: Emulating self-reconfigurable robots - design of the SMORES system. In: Proceeding of IEEE international conference on intelligent robots and systems, pp. 4464–4469. Vilamoura (2012)
    22.Wolfe, K., Moses, M., Kutzer, M., Chirikjian, G.: M3Express: a low-cost independently mobile reconfigurable modular robot. In: Proceeding of IEEE international conference on robotics and automation, pp. 2704–2710. Saint Paul (2012)
    23.Wei, H., Liu, M., Li, D., Wang, T.: A novel self-assembly modular swarm robot: docking mechanism design and self-assembly control. Jiqiren (Robot) 32(4), 614–621 (2010)
    24.Ko, D., Cheng, H.: Programming reconfigurable modular robots. In: Proceeding of IEEE/ASME international conference on mechatronics and embedded systems and applications, pp. 160–165. Suzhou (2012)
    25.Qiao, G., Song, G., Zhang, J., Sun, H., Wang, W., Song, A.: Design of transmote: a modular self-reconfigurable robot with versatile transformation capabilities. In: Proceeding of IEEE international conference on robotics and biomimetics, pp. 1331–1336. Guangzhou (2012)
    26.Wang, W., Qiao, G., Song, G., Zhang, Y., Wang, Y.: Design and implementation of a new intelligent modular reconfigurable robot. In: Proceeding of IEEE international conference on information and automation, pp. 797–802. Yinchuan (2013)
    27.Qiao, G., Song, G., Wang, W., Zhang, Y., Wang, Y.: Design and implementation of a modular self-reconfigurable robot. Int. J. Adv. Robot. Syst. (2014). doi:10.​5772/​58379
  • 作者单位:Ying Zhang (1)
    Guangming Song (1)
    Shengsong Liu (2)
    Guifang Qiao (1)
    Jun Zhang (1)
    Huiyu Sun (1)

    1. School of Instrument Science and Engineering, Southeast University, Nanjing, China
    2. Jiangsu Electric Power Company, Nanjing, China
  • 刊物类别:Engineering
  • 刊物主题:Automation and Robotics
    Electronic and Computer Engineering
    Artificial Intelligence and Robotics
    Mechanical Engineering
  • 出版者:Springer Netherlands
  • ISSN:1573-0409
文摘
This paper presents the design and implementation of a modular self-reconfigurable robot with enhanced locomotion capabilities. It is a small hexahedron robot which is 160 mm × 140 mm × 60 mm in size and 405 g in weight. The robot is driven by three omnidirectional wheels, with up and down symmetrical structure. The robot can perform rectilinear and rotational locomotion, and turn clockwise and counterclockwise without limitation. A new docking mechanism that combines the advantages of falcula and pin-hole has been designed for attaching and detaching different modules. The communication and image data transmission are based on a wireless network. The kinematics and dynamics of the single module has been analyzed, and the enhanced locomotion capabilities of the prototype robot are verified through experiments. The maximum linear velocity is 25.1cm/s, which is much faster than other modular self-reconfigurable robots. The mobility of two connected modules is analyzed in the ADAMS simulator. The locomotion of the docking modules is more flexible. Simulations on the wheel and crawling locomotion are conducted, the trajectories of the robot are shown, and the movement efficiency is analyzed. The docking mechanisms are tested through docking experiments, and the effectiveness has been verified. When the transmission time interval between the adjacent packets is more than 4 ms, the wireless network will not lose any packet at the maximum effective distance of 37 m in indoor environments. Keywords Modular robot Self-reconfigurable robot Locomotion analysis Omnidirectional wheels
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.