Effect of ultrasonic power on grain refinement and purification processing of AZ80 alloy by ultrasonic treatment
详细信息    查看全文
  • 作者:Zhiwen Shao (1)
    Qichi Le (1) qichil@mail.neu.edu.com
    Zhiqiang Zhang (1)
    Jianzhong Cui (1)
  • 关键词:Key words alloys &#8211 ; casting &#8211 ; grain refinement &#8211 ; computer simulation
  • 刊名:Metals and Materials International
  • 出版年:2012
  • 出版时间:April 2012
  • 年:2012
  • 卷:18
  • 期:2
  • 页码:209-215
  • 全文大小:592.5 KB
  • 参考文献:1. B. L. Mordike and T. Ebert, Mater. Sci. Eng. A 302, 37 (2001).
    2. D. Letzig, J. Swiostek, J. Bohlen, P. A. Beaven, and K. U. Kainer, Mater. Sci. Technol. 24, 991 (2008).
    3. M. R. Afshar, M. R. Aboutaiebi, M. Isac, and R. I. L. Guthrie, Mater. Lett. 61, 2045 (2007).
    4. G. I. Eskin, Ultrason. Sonochem. 8, 319 (2001).
    5. X. G. Jian, T. M. Thomas, and Q. Y. Han, Scripta. Mater. 54, 893 (2006).
    6. V. Abramov, O. Abramov, V. Bulgakov, and F. Sommer, Mater. Lett. 37, 27 (1998).
    7. X. B. Liu, Y. Osawa, S. Takamori, and T. Mukai, Mater. Lett. 62, 2872 (2008).
    8. A. Ramirez, Q. Ma, B. Davis, T. Wilks, and D. H. Stjohn, Scripta. Mater. 59, 19 (2008).
    9. T. V. Atamanenko, D. G. Eskin, L. Zhang, and L. Katgerman, Metall. Mater. Trans. A 41, 2056 (2010).
    10. Q. Ma, A. Ramirez, and A. Das, J. Cryst. Growth. 311, 3708 (2009).
    11. R. J. Townsend, M. Hill, N. R Harris, and N. M. White, Ultrason. 44, 467 (2006).
    12. Q. C. Le, Z. Q. Zhang, J. Z. Cui, X. Wang, and C. Li, Magnesium Technol., (eds. E. A. Nyberg, S. R. Agnew, N. R. Nellameggham, and M. O. Pekguleryuz), p. 45, TMS, San Francisco (2009).
    13. D. M. Gao, Z. J. Li, Q. Y. Han, and Q. J. Zhai, Mater. Sci. Eng. A 502, 2 (2009).
    14. V. S谩ez, A. Fr铆as-ferrer, J. Iniesta, J. Gonz谩lez-Garc铆a, A. Aldaz, and E. Riera, Ultrason. Sonochem. 12, 59 (2005).
    15. O. Louisnard, J. Gonzalez-Garcia, I. Tudela, J. Klima, V. Saez, and Y. Vargas-Hernandez, Ultrason. Sonochem. 16, 250 (2008).
    16. R. Feng, Ultrasonic handbook, pp.111–116, Publishing Company of Nanjin University, Nanjin, China (2001).
    17. R. G. Liu and X. Q. Li, Machinery & Electronics 12, 3 (2007).
    18. S. P. McAlister, E. D. Crozier, and J. F. Cochran, J. Phys. C: Solid State Phys. 6, 2269 (1973).
    19. S. Blairs, J. Colloid Interface. Sci. 302, 312 (2006).
    20. R. J. Townsend, M. Hill, N. R Harris, and N. M. White, Ultrason. 42, 319 (2004).
    21. F. G. Mitri, Ultrason. 44, 244 (2006).
    22. L. P. Gor’kov, Soviet Phys. Dokl. 6, 773 (1962).
    23. G. I. Eskin, Ultrasonic Treatment of Light Alloy Melts, pp. 18–55, Gordon and Breach, Amsterdam (1998).
    24. J. D. Hunt and K. A. Jackon, J. Appl. Phys. 37, 254 (1966).
    25. S. W. Choi, G. H. Kim, J. S. Bae, and Y. D. Kim, ICCASSICE 2009, p. 378. IEEE, Fukuoka, Japan (2009).
    26. M. Khosro-aghayani and B. Niroumand, J. Alloy. Compd. 509, 114 (2011).
    27. J. Kl铆ma, A. Fr铆as-ferrer, J. Gonz谩lez-garc脥a, J. Ludv铆k, V. S谩ez, and J. Iniesta, Ultrason. Sonochem. 14, 19 (2007).
    28. M. Qian and A. Ramirez, J. Appl. Phys. 105, 1358 (2009).
    29. N. Pebere, C. Riera, and F. Dabosi, Electrochimi. Acta. 35, 555 (1990).
    30. Z. J. Shen and B. D. Li, Mater. Mech. Eng. 27, 12 (2003).
    31. T. S. Shih, J. B. Liu, and P. S. Wei, Mater. Chem. Phys. 104, 497 (2007).
    32. K. J. Yasuda and S. I. Umemura, J. Acoust. Soc. Am. 99, 1965 (1996).
    33. M. A. H. Weiser, R. E. Apfel, and E. A. Neppiras, Acustica. 56, 114 (1984).
    34. C. J. Schram, Advances in Sonochemistry (eds. T.J. Mason), p. 293, Elsevier, Amsterdam (1991).
    35. Q. C. Le and J. Z Cui, Fundamental Principle of Transport, pp. 37–45, Metallurgy Industry Press, Beijing (2005).
  • 作者单位:1. Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang, 110004 PR China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Metallic Materials
    Operating Procedures and Materials Treatment
  • 出版者:The Korean Institute of Metals and Materials, co-published with Springer Netherlands
  • ISSN:2005-4149
文摘
Ultrasound with different powers was applied to treat AZ80 alloy melt to attain grain refinement or purification processing of the alloy. The influence of ultrasonic powers from 0 W to 1400 W on microstructures of the AZ80 alloy with ultrasonic grain refinement treatment was investigated. The average grain size of the alloy could be decreased from 387 μm to 147 μm after the ultrasound with the optimal power 600 W was applied to treat the melt. The effect of ultrasonic powers from 0 W to 230 W on the inclusion distribution in the ingot that was treated by ultrasonic purification processing was also studied. The optimal ultrasonic power in the ultrasonic purification processing was 80 W. In order to gain insight into the mechanism by which ultrasonic power affected the microstructure of the alloy or inclusion distribution in the ingot, numerical simulations were carried out and the ultrasonic field propagation in the melt was characterized.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.