Sex differences and endocrine regulation of auditory-evoked, neural responses in African clawed frogs (Xenopus)
详细信息    查看全文
  • 作者:Ian C. Hall ; Sarah M. N. Woolley ; Ursula Kwong-Brown…
  • 关键词:Xenopus ; ABR ; Matched filter ; Sex difference ; Androgen
  • 刊名:Journal of Comparative Physiology A
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:202
  • 期:1
  • 页码:17-34
  • 全文大小:1,252 KB
  • 参考文献:Aertsen AMHJ, Vlaming MSMG, Eggermont JJ, Johannesma PIM (1986) Directional hearing in the grassfrog (Rana temporaria L.). II. Acoustics and modelling of the auditory periphery. Hear Res 21:17–40. doi:10.​1016/​0378-5955(86)90043-2 PubMed CrossRef
    Akamatsu T, Okumura T, Novarini N, Yan HY (2002) Empirical refinements applicable to the recording of fish sounds in small tanks. J Acoust Soc Am 112:3073–3083. doi:10.​1121/​1.​1515799 PubMed CrossRef
    Arch VS, Narins PM (2009) Sexual hearing: the influence of sex hormones on acoustic communication in frogs. Hear Res 252:15–20. doi:10.​1016/​j.​heares.​2009.​01.​001 PubMed PubMedCentral CrossRef
    Balak KJ, Corwin JT, Jones JE (1990) Regenerated hair cells can originate from supporting cell progeny: evidence from phototoxicity and laser ablation experiments in the lateral line system. J Neurosci 10:2502–2512PubMed
    Bauer EE, Klug A, Pollak GD (2002) Spectral determination of responses to species-specific calls in the dorsal nucleus of the lateral lemniscus. J Neurophysiol 88:1955–1967PubMed
    Bidelman GM (2013) The role of the auditory brainstem in processing musically relevant pitch. Front Psychol 4:264. doi:10.​3389/​fpsyg.​2013.​00264 PubMed PubMedCentral CrossRef
    Bidelman GM, Krishnan A (2009) Neural correlates of consonance, dissonance, and the hierarchy of musical pitch in the human brainstem. J Neurosci 29:13165–13171PubMed PubMedCentral CrossRef
    Bones O, Hopkins K, Krishnan A, PC J (2014) Phase locked neural activity in the human brainstem predicts preference for musical consonance. Neuropsychologia 58:23–32PubMed PubMedCentral CrossRef
    Brandt C, Andersen T, Christensen-Dalsgaard J (2008) Demonstration of a portable system for auditory brainstem recordings based on pure tone masking difference. In: 1st International symposium on auditory and audiological research, pp 241–247
    Brittan-Powell EF, Lohr B, Hahn DC, Dooling RJ (2002) Auditory brainstem responses in the eastern screech owl: an estimate of auditory thresholds. J Acoust Soc Am 118:314–321CrossRef
    Bruzzone F, Do Rego J-L, Luu-The V, Pelletier G, Vallarino M, Vaudry H (2010) Immunohistochemical localization and biological activity of 3β-hydroxysteroid dehydrogenase and 5α-reductase in the brain of the frog, Rana esculenta, during development. J Chem Neuroanat 39:35–50. doi:10.​1016/​j.​jchemneu.​2009.​08.​001 PubMed CrossRef
    Buerkle NP, Schrode KM, Bee MA (2014) Assessing stimulus and subject influences on auditory evoked potentials and their relation to peripheral physiology in green treefrogs (Hyla cinerea). Comp Biochem Physiol A 178:68–81. doi:10.​1016/​j.​cbpa.​2014.​08.​005 CrossRef
    Cacala KK, Price SJ, Dorcas ME (2007) A comparison of the effectiveness of recommended doses of MS-222 (tricaine methanesulfonate) and Orajel® (benzocaine) for amphibian anesthesia. Herpetol Rev 38:63–66
    Cakir Y, Strauch SM (2005) Tricaine (MS-222) is a safe anesthetic compound compared to benzocaine and pentobarbital to induce anesthesia in leopard frogs (Rana pipiens). Pharmacol Rep 57:467–474PubMed
    Capranica RR, Moffat AJM (1980) Nonlinear properties of the peripheral auditory system of anurans. In: Popper A, Fay R (eds) Comparative studies of hearing in vertebrates, chap 5. Springer, New York, pp 139–165
    Capranica RR, Moffat AJM (1983) Neurobehavioral correlates of sound communication in anurans. In: Ewert JP, Capranica RR, Ingle D (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 701–730. doi:10.​1007/​978-1-4684-4412-4_​36
    Chandrasekaran B, Kraus N (2010) The scalp-recorded brainstem response to speech: neural origins and plasticity. Psychophysiology 47:236–246. doi:10.​1111/​j.​1469-8986.​2009.​00928.​x PubMed PubMedCentral CrossRef
    Christensen-Dalsgaard J, Brandt C, Willis KL, Christensen CB, Ketten D, Edds-Walton P, Fay RR, Madsen PT, Carr CE (2012) Specialization for underwater hearing by the tympanic middle ear of the turtle, Trachemys scripta elegans. Proc Biol Soc 279:2816–2824. doi:10.​1098/​rspb.​2012.​0290 CrossRef
    Corwin JT, Bullock TH, Schweitzer J (1982) The auditory brainstem response in five vertebrate classes. Electroencephalogr Clin Neurophysiol 54:629–641PubMed CrossRef
    Dunia R, Narins PM (1989) Temporal resolution in frog auditory-nerve fibers. J Acoust Soc Am 85:1630–1638PubMed CrossRef
    Edwards CJ, Alder TB, Rose GJ (2002) Auditory midbrain neurons that count. Nat Neurosci 5:934–936PubMed CrossRef
    Elepfandt A, Eistetter I, Fleig A, Gunther E, Hainich M, Hepperle S, Traub B (2000) Hearing threshold and frequency discrimination in the purely aquatic frog Xenopus laevis (Pipidae): measurement by means of conditioning. J Exp Biol 203(Pt 23):3621–3629PubMed
    Elliott TM, Christensen-Dalsgaard J, Kelley DB (2007) Tone and call responses of units in the auditory nerve and dorsal medullary nucleus of Xenopus laevis. J Comp Physiol A 193:1243–1257. doi:10.​1007/​s00359-007-0285-z CrossRef
    Forlano PM, Sisneros JA, Rohmann KN, Bass AH (2015) Neuroendocrine control of seasonal plasticity in the auditory and vocal systems of fish. Front Neuroendocrinol 37:129–145. doi:10.​1016/​j.​yfrne.​2014.​08.​002 PubMed CrossRef
    Fox JH (1995) Morphological correlates of auditory sensitivity in anuran amphibians. Brain Behav Evol 45:327–338PubMed CrossRef
    Freedman EG, Ferragamo M, Simmons AM (1988) Masking patterns in the bullfrog (Rana catesbeiana) II: physiological effects. J Acoust Soc Am 84:2081–2091PubMed CrossRef
    Frishkopf LS, Capranica RR, Goldstein MH Jr (1968) Neural coding in the bullfrog’s auditory system a teleological approach. Proc IEEE 56:969–980. doi:10.​1109/​PROC.​1968.​6448 CrossRef
    Furman BLS, Bewick AJ, Harrison TL, Greenbaum E, Gvozdik V, Kusamba C, Evans BJ (2015) Pan-African phylogeography of a model organism, the African clawed frog ‘Xenopus laevis’. Mol Ecol 24:909–925. doi:10.​1111/​mec.​13076 PubMed CrossRef
    Gall MD, Wilczynski W (2015) Hearing conspecific vocal signals alters peripheral auditory sensitivity. Proc R Soc B 282:1–8. doi:10.​1098/​rspb.​2015.​0749 CrossRef
    Gerhardt HC (1978) Mating call recognition in the green treefrog (Hyla cinerea): the significance of some fine-temporal properties. J Exp Biol 74:59–73
    Gerhardt HC, Humfeld SC (2013) Pre-existing sensory biases in the spectral domain in frogs: empirical results and methodological considerations. J Comp Physiol A 199:151–157. doi:10.​1007/​s00359-012-0776-4 CrossRef
    Gerhardt HC, Schwartz JJ (2001) Auditory tuning and frequency preferences in anurans. In: Ryan MJ (ed) Anuran communication. Smithsonian Institution Press, Washington, pp 73–85
    Gerhardt HC, Allan S, Schwartz JJ (1990) Female green treefrogs (Hyla cinerea) do not selectively respond to signals with a harmonic structure in noise. J Comp Physiol A 166:791–794PubMed CrossRef
    Gerhardt HC, Martínez-Rivera CC, Schwartz JJ, Marshall VT, Murphy CG (2007) Preferences based on spectral differences in acoustic signals in four species of treefrogs (Anura: Hylidae). J Exp Biol 210:2990–2998PubMed CrossRef
    Goense JB, Feng AS (2005) Seasonal changes in frequency tuning and temporal processing in single neurons in the frog auditory midbrain. J Neurobiol 65:22–36. doi:10.​1002/​neu.​20172 PubMed CrossRef
    Gruber CJ, Tschugguel W, Schneeberger C, Huber JC (2002) Production and actions of estrogens. N Engl J Med 346(5):340–352. doi:10.​1056/​NEJMra000471 PubMed CrossRef
    Hainfeld CA, Boatright-Horowitz SL, Boatright-Horowitz SS, Megela Simmons A (1996) Discrimination of phase spectra in complex sounds by the bullfrog (Rana catesbeiana). J Comp Physiol A 179:75–78PubMed CrossRef
    Hall JW (2007) New handbook for auditory evoked responses. Pearson, Boston
    Hillery CM (1984) Seasonality of two midbrain auditory responses in the treefrog, Hyla chrysoscelis. Copeia 1984:844–852. doi:10.​2307/​1445327 CrossRef
    Hoke KL, Burmeister SS, Fernald RD, Rand AS, Ryan MJ, Wilczynski W (2004) Functional mapping of the auditory midbrain during mate call reception. J Neurosci 24:11264–11272PubMed CrossRef
    Humes LE (1979) Perception of the simple difference tone (f2–f1). J Acoust Soc Am 66:1064–1074PubMed CrossRef
    Jørgensen MB, Schmitz B, Christensen-Dalsgaard J (1991) Biophysics of directional hearing in the frog Eleutherodactylus coqui. J Comp Physiol A 168:223–232. doi:10.​1007/​BF00218414 CrossRef
    Katbamna B, Brown JA, Collard M, Ide CF (2006a) Auditory brainstem responses to airborne sounds in the aquatic frog Xenopus laevis: correlation with middle ear characteristics. J Comp Physiol A 192:381–387CrossRef
    Katbamna B, Langerveld AJ, Ide CF (2006b) Aroclor 1254 impairs the hearing ability of Xenopus laevis. J Comp Physiol A 192:971–983CrossRef
    Keddy-Hector AC, Wilczynski W, Ryan MJ (1992) Call patterns and basilar papilla tuning in cricket frogs. II. Intrapopulation variation and allometry. Brain Behav Evol 39:238–246PubMed CrossRef
    Kelley DB (1986) Neuroeffectors for vocalization in Xenopus laevis: hormonal regulation of sexual dimorphism. J Neurobiol 17:231–248. doi:10.​1002/​neu.​480170307 PubMed CrossRef
    Klug A, Bauer EE, Hanson JT, Hurley L, Meitzen J, Pollak GD (2002) Response selectivity for species-specific calls in the inferior colliculus of Mexican free-tailed bats is generated by inhibition. J Neurophysiol 88:1941–1954PubMed
    Klump GM, Benedix JH Jr, Gerhardt HC, Narins PM (2004) AM representation in green treefrog auditory nerve fibers: neuroethological implications for pattern recognition and sound localization. J Comp Physiol A 190:1011–1021CrossRef
    Krishnan A, Gandour JT (2009) The role of the auditory brainstem in processing linguistically-relevant pitch patterns. Brain Lang 110:135–148. doi:10.​1016/​j.​bandl.​2009.​03.​005 PubMed PubMedCentral CrossRef
    Krishnan A, Gandour JT, Smalt CJ, Bidelman GM (2010) Language-dependent pitch encoding advantage in the brainstem is not limited to acceleration rates that occur in natural speech. Brain Lang 114:193–198PubMed PubMedCentral CrossRef
    Lerud KD, Almonte FV, Kim JC, Large EW (2014) Mode-locking neurodynamics predict human auditory brainstem responses to musical intervals. Hear Res 308:41–49. doi:10.​1016/​j.​heares.​2013.​09.​010 PubMed CrossRef
    Lewis ER, Baird RA, Leverenz EL, Koyama H (1982) Inner ear: dye injection reveals peripheral origins of specific sensitivities. Science 215:1641–1643. doi:10.​1126/​science.​6978525 PubMed CrossRef
    Lutz LB, Cole LM, Gupta MK, Kwist KW, Auchus RJ, Hammes SR (2001) Evidence that androgens are the primary steroids produced by Xenopus laevis ovaries and may signal through the classical androgen receptor to promote oocyte maturation. Proc Natl Acad Sci USA 98:13728–13733. doi:10.​1073/​pnas.​241471598 PubMed PubMedCentral CrossRef
    Malmberg CF (1918) The perception of consonance and dissonance. Psychol Monogr 25:93–133CrossRef
    Mason M, Wang M, Narins P (2009) Structure and function of the middle ear apparatus of the aquatic frog (Xenopus laevis). Proc Inst Acoust 31:13–21PubMed PubMedCentral
    Meenderink SWF, Kits M, Narins PM (2010) Frequency matching of vocalizations to inner-ear sensitivity along an altitudinal gradient in the coqui frog. Biol Lett 6:278–281PubMed PubMedCentral CrossRef
    Mensah-Nyagan AG, Do Rego J-L, Feuilloley M, Marcual A, Lange C, Pelletier G, Vaudry H (1996) In vivo and in vitro evidence for the biosynthesis of testosterone in the telencephalon of the female frog. J Neurochem 67:413–422. doi:10.​1046/​j.​1471-4159.​1996.​67010413.​x PubMed CrossRef
    Meyers JR, MacDonald RB, Duggan A, Lenzi D, Standaert DG, Corwin JT, Corey DP (2003) Lighting up the senses: FM1-43 loading of sensory cells through nonselective ion channels. J Neurosci 23:4054–4065PubMed
    Mitchell C, Phillips DS, Trune DR (1989) Variables affecting the auditory brainstem response: audiogram, age, gender and head size. Hear Res 40:75–86PubMed CrossRef
    Moreno-Gomez FN, Sueur J, Soto-Gamboa M, Penna M (2013) Female frog auditory sensitivity, male calls, and background noise: potential influences on the evolution of a peculiar matched filter. Biol J Linn Soc 110:814–827. doi:10.​1111/​bij.​12156 CrossRef
    Narins PM, Capranica RR (1976) Sexual differences in the auditory system of the tree frog Eleutherodactylus coqui. Science 192:378–380. doi:10.​1126/​science.​1257772 PubMed CrossRef
    Narins PM, Capranica RR (1980) Neural adaptations for processing the two-note call of the Puerto Rican treefrog, Eleutherodactylus coqui. Brain Behav Evol 17:48–66PubMed CrossRef
    Narins PM, Wagner I (1989) Noise susceptibility and immunity of phase locking in amphibian auditory-nerve fibers. J Acoust Soc Am 85:1255–1265PubMed CrossRef
    Narins PM, Ehret G, Tautz J (1988) Accessory pathway for sound transfer in a neotropical frog. Proc Natl Acad Sci USA 85:1508–1512PubMed PubMedCentral CrossRef
    Penna M, Capranica RR, Somers J (1992) Hormone-induced vocal behavior and midbrain auditory sensitivity in the green treefrog, Hyla cinerea. J Comp Physiol A 170:73–82PubMed CrossRef
    Perez J, Cohen MA, Kelley DB (1996) Androgen receptor mRNA expression in Xenopus laevis CNS: sexual dimorphism and regulation in laryngeal motor nucleus. J Neurobiol 30:556–568. doi:10.​1002/​(SICI)1097-4695(199608)30:​4<556:​AID-NEU10>3.​0.​CO;2-D PubMed CrossRef
    Phan ML, Pytte CL, Vicario DS (2006) Early auditory experience generates long-lasting memories that may subserve vocal learning in songbirds. Proc Natl Acad Sci USA 103:1088–1093. doi:10.​1073/​pnas.​0510136103 PubMed PubMedCentral CrossRef
    Picker M (1983) Hormonal induction of the aquatic phonotactic response of Xenopus. Behaviour 84:74–90. doi:10.​1163/​156853983X00291 CrossRef
    Pinder AC, Palmer AR (1983) Mechanical properties of the frog ear: vibration measurements under free- and closed-field acoustic conditions. Proc R Soc Lond B Biol Sci 219:371–396PubMed CrossRef
    Portfors CV, Roberts PD, Jonson K (2009) Over-representation of species-specific vocalizations in the awake mouse inferior colliculus. Neuroscience 162:286–300CrossRef
    Ramlochansingh C, Branoner F, Chagnaud BP, Straka H (2014) Efficacy of tricaine methanesulfonate (MS-222) as an anesthetic agent for blocking sensory-motor responses in Xenopus laevis tadpoles. PLoS One e101606. doi:10.​1371/​journal.​pone.​0101606
    Remage-Healey L, Dong SM, Chao A, Schlinger BA (2012) Sex-specific, rapid neuroestrogen fluctuations and neurophysiological actions in the songbird auditory forebrain. J Neurophysiol 107(6):1621–1631. doi:10.​1152/​jn.​00749.​2011 PubMed PubMedCentral CrossRef
    Rhodes HJ, Yu HJ, Yamaguchi A (2007) Xenopus vocalizations are controlled by a sexually differentiated hindbrain central pattern generator. J Neurosci 27:1485–1497. doi:10.​1523/​JNEUROSCI.​4720-06.​2007 PubMed PubMedCentral CrossRef
    Rose GJ, Capranica RR (1985) Sensitivity to amplitude modulated sounds in the anuran auditory nervous system. J Neurophysiol 53:446–465PubMed
    Ruggero M, Robles L, Rich N, Recio A (1992) Basilar membrane responses to two-tone and broadband stimuli. Philos Trans R Soc Lond B Biol Sci 336:307–315PubMed PubMedCentral CrossRef
    Schoffelen RLM, Segenhout JM, van Dijk P (2009) Tuning of the tectorial membrane in the basilar papilla of the northern leopard frog. J Assoc Res Otolaryngol 10:309–320PubMed PubMedCentral CrossRef
    Schrode KM, Buerkle NP, Brittan-Powell EF, Bee MA (2014) Auditory brainstem responses in Cope’s gray treefrog (Hyla chrysoscelis): effects of frequency, level, sex and size. J Comp Physiol A 200:221–238. doi:10.​1007/​s00359-014-0880-8 CrossRef
    Schumacher JW, Schneider DM, Woolley SMN (2011) Anesthetic state modulates excitability but not spectral tuning or neural discrimination in single auditory midbrain neurons. J Neurophysiol 106:500–514PubMed PubMedCentral CrossRef
    Seaman RL (1991) Method to record evoked potentials from the frog eighth nerve. Hear Res 51:301–305. doi:10.​1016/​0378-5955(91)90046-C PubMed CrossRef
    Shapiro SS, Wilk MB, Chen HJ (1968) A comparative study of various tests for normality. J Am Stat Assoc 63(324):1343–1372CrossRef
    Shen J-X, Xu Z-M, Yu Z-L, Wang S, Zheng D-Z, Fan S-C (2011) Ultrasonic frogs show extraordinary sex differences in auditory frequency sensitivity. Nat Commun 2:1–5. doi:10.​1038/​ncomms1339
    Simmons AM (1988) Selectivity for harmonic structure in complex sounds by the green treefrog (Hyla cinerea). J Comp Physiol A 162:397–403PubMed CrossRef
    Simmons AM (2013) “To ear is human, to forgive is divine”: Bob Capranica’s legacy to auditory neuroethology. J Comp Physiol A 199:169–182. doi:10.​1007/​s00359-012-0786-2 CrossRef
    Simmons AM, Bean ME (2000) Perception of mistuned harmonics in complex sounds by the bullfrog (Rana catesbeiana). J Comp Psychol 114:167–173. doi:10.​1037/​0735-7036.​114.​2.​167 PubMed CrossRef
    Sisneros JA, Forlano PM, Deitcher DL, Bass AH (2004) Steroid-dependent auditory plasticity leads to adaptive coupling of sender and receiver. Science 205:404–407CrossRef
    Skoe E, Kraus N (2010) Auditory brainstem response to complex sounds: a tutorial. Ear Hear 31:302–324PubMed PubMedCentral CrossRef
    Smotherman MS, Narins PM (1998) Effect of temperature on electrical resonance in leopard frog saccular hair cells. J Neurophysiol 79:312–321PubMed
    Smotherman MS, Narins PM (2000) Hair cells, hearing and hopping: a field guide to hair cell physiology in the frog. J Exp Biol 203:2237–2246PubMed
    Tobias ML, Barnard C, O’Hagan R, Horng SH, Rand M, Kelley DB (2004) Vocal communication between male Xenopus laevis. Anim Behav 67:353–365. doi:10.​1016/​j.​anbehav.​2003.​03.​016 PubMed PubMedCentral CrossRef
    Tobias ML, Corke A, Korsh J, Yin D, Kelley DB (2010) Vocal competition in male Xenopus laevis frogs. Behav Ecol Sociobiol 64:1791–1803. doi:10.​1007/​s00265-010-0991-3 PubMed PubMedCentral CrossRef
    Tobias ML, Evans BJ, Kelley DB (2011) Evolution of advertisement calls in African clawed frogs. Behaviour 148:519–549. doi:10.​1163/​000579511X569435​ PubMed PubMedCentral CrossRef
    Tobias ML, Korsh J, Kelley DB (2014) Evolution of male and female release calls in African clawed frogs. Behaviour 151:1313–1334. doi:10.​1163/​1568539X-00003186 CrossRef
    Van Dijk P, Mason MJ, Schoffelen RLM, Narins PM, Meenderink SWF (2011) Mechanics of the frog ear. Hear Res 273:46–58PubMed PubMedCentral CrossRef
    Vaudry H, Do Rego J-L, Burel D, Luu-The V, Pelletier G, Vaudry D, Tsutsui K (2011) Neurosteroid biosynthesis in the brain of amphibians. Front Neuroendocrinol 2:1–9. doi:10.​3389/​fendo.​2011.​00079
    Vélez A, Gall MD, Lucas JR (2015) Seasonal plasticity in auditory processing of the envelope and temporal fine structure of sounds in three songbirds. Anim Behav 103:52–63. doi:10.​1016/​j.​anbehav.​2015.​01.​036 CrossRef
    Vignal C, Kelley DB (2007) Significance of temporal and spectral acoustic cues for sexual recognition in Xenopus laevis. Proc R Soc Lond B Biol Sci 274:479–488. doi:10.​1098/​rspb.​2006.​3744 CrossRef
    Vigny C (1979) The mating calls of 12 species and sub-species of the genus Xenopus (Amphibia: Anura). J Zool Lond 188:103–122. doi:10.​1111/​j.​1469-7998.​1979.​tb03394.​x CrossRef
    Wetzel DM, Kelley DB (1983) Androgen and gonadotropin effects on male mate calls in South African clawed frogs, Xenopus laevis. Horm Behav 17:388–404. doi:10.​1016/​0018-506X(83)90048-X PubMed CrossRef
    Wilczynski W, Zakon HH, Brenowitz EA (1984) Acoustic communication in spring peepers. J Comp Physiol A 155:577–584. doi:10.​1007/​BF00610843 CrossRef
    Wilczynski W, Keddy-Hector AC, Ryan MJ (1992) Call patterns and basilar papilla tuning in cricket frogs. I. Differences among populations and between sexes. Brain Behav Evol 39:229–237. doi:10.​1159/​000114120 PubMed CrossRef
    Wilczynski W, Rand AS, Ryan MJ (2001) Evolution of calls and auditory tuning in the Physalaemus pustulosus species group. Brain Behav Evol 58:137–151PubMed CrossRef
    Witte K, Ryan MJ, Wilczynski W (2001) Changes in the frequency structure of a mating call decrease its attractiveness to females in the cricket frog Acris crepitans blanchardi. Ethology 107:685–699CrossRef
    Woolley SMN, Portfors CV (2013) Conserved mechanisms of vocalization coding in mammalian and songbird auditory midbrain. Hear Res 305:45–56. doi:10.​1016/​j.​heares.​2013.​05.​005 PubMed CrossRef
    Worden FG, Marsh JT (1968) Frequency-following (microphonic-like) neural responses evoked by sound. Electroencephalogr Clin Neurophysiol 25:42–52. doi:10.​1016/​0013-4694(68)90085-0 PubMed CrossRef
    Wright A, Rivera J, Hulse S, Shyan M, Neiworth J (2000) Music perception and octave generalization in rhesus monkeys. J Exp Psychol Gen 129:291–307. doi:10.​1037/​0096-3445.​129.​3.​291 PubMed CrossRef
    Yager DD (1992) Underwater acoustic communication in the African pipid frog Xenopus borealis. Bioacoustics 4:1–24. doi:10.​1080/​09524622.​1992.​9753201 CrossRef
    Yoder KM, Vicario DS (2012) To modulate and be modulated: estrogenic influences on auditory processing of communication signals within a socio-neuro-endocrine framework. Behav Neurosci 126:17–28. doi:10.​1037/​a0026673 PubMed PubMedCentral CrossRef
    Yoder KM, Phan ML, Lu K, Vicario DS (2015) He hears, she hears: are there sex differences in auditory processing? Dev Neurobiol 75:302–314. doi:10.​1002/​dneu.​22231 PubMed CrossRef
    Zakon HH, Wilczynski W (1988) The physiology of the anuran eighth nerve. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W (eds) The evolution of the amphibian auditory system. Wiley, New York, pp 125–155
    Zornik E, Kelley DB (2011) A neuroendocrine basis for the hierarchical control of frog courtship vocalizations. Front Neuroendocrinol 32:353–366. doi:10.​1016/​j.​yfrne.​2010.​12.​006 PubMed PubMedCentral CrossRef
  • 作者单位:Ian C. Hall (1) (3)
    Sarah M. N. Woolley (2)
    Ursula Kwong-Brown (1) (4)
    Darcy B. Kelley (1)

    1. Department of Biological Sciences, Columbia University, Fairchild Building, MC 2432, New York, NY, 10027, USA
    3. Department of Biology, St. Mary’s College of Maryland, Schaeffer Hall 258, St. Mary’s City, MD, 20686, USA
    2. Department of Psychology, Columbia University, Schermerhorn Hall, MC 5501, New York, NY, 10027, USA
    4. Center for New Music and Audio Technologies, University of California, Berkeley, CA, 94720, USA
  • 刊物主题:Animal Physiology; Neurosciences; Zoology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1432-1351
文摘
Mating depends on the accurate detection of signals that convey species identity and reproductive state. In African clawed frogs, Xenopus, this information is conveyed by vocal signals that differ in temporal patterns and spectral features between sexes and across species. We characterized spectral sensitivity using auditory-evoked potentials (AEPs), commonly known as the auditory brainstem response, in males and females of four Xenopus species. In female X. amieti, X. petersii, and X. laevis, peripheral auditory sensitivity to their species own dyad—two, species-specific dominant frequencies in the male advertisement call—is enhanced relative to males. Males were most sensitive to lower frequencies including those in the male-directed release calls. Frequency sensitivity was influenced by endocrine state; ovariectomized females had male-like auditory tuning while dihydrotestosterone-treated, ovariectomized females maintained female-like tuning. Thus, adult, female Xenopus demonstrate an endocrine-dependent sensitivity to the spectral features of conspecific male advertisement calls that could facilitate mating. Xenopus AEPs resemble those of other species in stimulus and level dependence, and in sensitivity to anesthetic (MS222). AEPs were correlated with body size and sex within some species. A frequency following response, probably encoded by the amphibian papilla, might facilitate dyad source localization via interaural time differences.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.