Increased serum gamma-glutamyltransferase levels are associated with ventricular instability in type 2 diabetes
详细信息    查看全文
  • 作者:Kun Wang ; Ling Li ; Yang Wu ; Yu Yang ; Jie Chen ; Danyu Zhang ; Zhoujun Liu…
  • 关键词:Type 2 diabetes mellitus (T2DM) ; Gamma ; glutamyltransferase (GGT) ; Corrected QT interval (QTc) ; QT dispersion (QTd) ; Ventricular instability
  • 刊名:Endocrine
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:52
  • 期:1
  • 页码:63-72
  • 全文大小:540 KB
  • 参考文献:1.B.S. Rana, P.O. Lim, A.A. Naas, S.A. Ogston, R.W. Newton, R.T. Jung, A.D. Morris, A.D. Struthers, QT interval abnormalities are often present at diagnosis in diabetes and are better predictors of cardiac death than ankle brachial pressure index and autonomic function tests. Heart 91, 44–50 (2005)CrossRef PubMed PubMedCentral
    2.R. Marfella, F. Rossi, D. Giugliano, Hyperglycaemia and QT interval: time for re-evaluation. Diabetes Nutr. Metab. 14, 63–65 (2001)PubMed
    3.S. Giunti, G. Bruno, E. Lillaz, G. Gruden, V. Lolli, N. Chaturvedi, J.H. Fuller, M. Veglio, P. Cavallo-Perin, EURODIAB IDDM Complications Study Group: incidence and risk factors of prolonged QTc interval in type 1 diabetes: the EURODIAB Prospective Complications Study. Diabetes Care 30, 2057–2063 (2007)CrossRef PubMed
    4.A.A. Naas, N.C. Davidson, C. Thompson, R.T. Jung, R.W. Newton, A.D. Struthers, QT and QTc dispersion are accurate predictors of cardiac death in newly diagnosed non-insulin-dependent diabetes: cohort study. BMJ 316, 745–746 (1998)CrossRef PubMed PubMedCentral
    5.C. Cardoso, G. Salles, K. Bloch, W. Deccache, A.G. Siqueira-Filho, Clinical determinants of increased QT dispersion in patients with diabetes mellitus. Int. J. Cardiol. 79, 253–262 (2001)CrossRef PubMed
    6.M. Odermarsky, J. Lykkesfeldt, P. Liuba, Poor vitamin C status is associated with increased carotid intima-media thickness, decreased microvascular function, and delayed myocardial repolarization in young patients with type 1 diabetes. Am. J. Clin. Nutr. 90, 447–452 (2009)CrossRef PubMed
    7.A.P. Kellogg, K. Converso, T. Wiggin, M. Stevens, R. Pop-Busui, Effects of cyclooxygenase-2 gene inactivation on cardiac autonomic and left ventricular function in experimental diabetes. Am. J. Physiol. Heart Circ. Physiol. 296, H453–H461 (2009)CrossRef PubMed PubMedCentral
    8.G. Perseghin, F. De Cobelli, A. Esposito, E. Belloni, G. Lattuada, T. Canu, P.L. Invernizzi, F. Ragogna, A. La Torre, P. Scifo, G. Alberti, A. Del Maschio, L. Luzi, Left ventricular function and energy metabolism in middle-aged men undergoing long-lasting sustained aerobic oxidative training. Heart 95, 630–635 (2009)CrossRef PubMed
    9.Z. Lu, J. Abe, J. Taunton, Y. Lu, T. Shishido, C. McClain, C. Yan, S.P. Xu, T.M. Spangenberg, H. Xu, Reactive oxygen species-induced activation of p90 ribosomal S6 kinase prolongs cardiac repolarization through inhibiting outward K+ channel activity. Circ. Res. 103, 269–278 (2008)CrossRef PubMed PubMedCentral
    10.A. Pannaccione, P. Castaldo, E. Ficker, L. Annunziato, M. Taglialatela, Histidines 578 and 587 in the S5-S6 linker of the human Ether-a-gogo related Gene-1K channels confer sensitivity to reactive oxygen species. J. Biol. Chem. 277, 8912–8919 (2002)CrossRef PubMed
    11.W.H. Tang, W.T. Cheng, G.M. Kravtsov, X.Y. Tong, X.Y. Hou, S.K. Chung, S.S. Chung, Cardiac contractile dysfunction during acute hyperglycemia due to impairment of SERCA by polyol pathway-mediated oxidative stress. Am. J. Physiol. Cell. Physiol. 299, C643–C653 (2010)CrossRef PubMed PubMedCentral
    12.A. Fraser, R. Harris, N. Sattar, S. Ebrahim, D.G. Smith, D.A. Lawlor, Alanine aminotransferase, gamma-glutamyltransferase, and incident diabetes: the British Women’s Heart and Health Study and meta-analysis. Diabetes Care 32, 741–750 (2009)CrossRef PubMed PubMedCentral
    13.N. Nakanishi, K. Suzuki, K. Tatara, Serum gamma-glutamyltransferase and risk of metabolic syndrome and type 2 diabetes in middle-aged Japanese men. Diabetes Care 27, 1427–1432 (2004)CrossRef PubMed
    14.S.G. Wannamethee, P.H. Whincup, A.G. Shaper, L. Lennon, N. Sattar, γ-glutamyltransferase, hepatic enzymes, and risk of incident heart failure in older men. Arterioscler. Thromb. Vasc. Biol. 32, 830–835 (2012)CrossRef PubMed
    15.A.M. Strasak, C.C. Kelleher, J. Klenk, L.J. Brant, E. Ruttmann, K. Rapp, H. Concin, G. Diem, K.P. Pfeiffer, H. Ulmer, Vorarlberg Health Monitoring and Promotion Program Study Group, Longitudinal change in serum gamma-glutamyltransferase and cardiovascular disease mortality: a prospective population-based study in 76,113 Austrian adults. Arterioscler. Thromb. Vasc. Biol. 28, 1857–1865 (2008)CrossRef PubMed PubMedCentral
    16.M. Emdin, A. Pompella, A. Paolicchi, Gamma-glutamyltransferase, atherosclerosis, and cardiovascular disease: triggering oxidative stress within the plaque. Circulation 112, 2078–2080 (2005)CrossRef PubMed
    17.A. Paolicchi, M. Emdin, E. Ghliozeni, E. Ciancia, C. Passino, G. Popoff, A. Pompella, Images in cardiovascular medicine. Human atherosclerotic plaques contain gamma-glutamyl transpeptidase enzyme activity. Circulation 109, 1440 (2004)CrossRef PubMed
    18.C. Lengyel, L. Virág, T. Bíró, N. Jost, J. Magyar, P. Biliczki, E. Kocsis, R. Skoumal, P.P. Nánási, M. Tóth, V. Kecskeméti, J.G. Papp, A. Varró, Diabetes mellitus attenuates the repolarization reserve in mammalian heart. Cardiovasc. Res. 73, 512–520 (2007)CrossRef PubMed
    19.G. Ning, Reaction study group. Risk Evaluation of cAncers in Chinese diabeTic Individuals: a lONgitudial (REACTION) study. J. Diabetes 4, 172–173 (2012)CrossRef PubMed
    20.K. Wang, Y. Yang, Y. Wu, J. Chen, D. Zhang, X. Mao, X. Wu, X. Long, C. Liu, The association between insulin resistance and vascularization of thyroid nodules. J. Clin. Endocrinol. Metab. 100, 184–192 (2015)CrossRef PubMed
    21.D.H. Lee, D.R. Jacobs Jr, M. Gross, C.I. Kiefe, J. Roseman, C.E. Lewis, M. Steffes, Gammaglutamyltransferase is a predictor of incident diabetes and hypertension: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Clin. Chem. 49, 1358–1366 (2003)CrossRef PubMed
    22.P.M. Okin, R.B. Devereux, E.T. Lee, J.M. Galloway, B.V. Howard, Strong Heart Study, Electrocardiographic repolarization complexity and abnormality predict all-cause and cardiovascular mortality in diabetes: the strong heart study. Diabetes 53, 434–440 (2004)CrossRef PubMed
    23.M. Veglio, G. Bruno, M. Borra, G. Macchia, G. Bargero, N. D’Errico, G.F. Pagano, P. Cavallo-Perin, Prevalence of increased QT interval duration and dispersion in type 2 diabetic patients and its relationship with coronary heart disease: a population-based cohort. J. Int. Med 25, 317–324 (2002)CrossRef
    24.J.S. Lim, J.H. Yang, B.Y. Chun, S. Kam, D.R. Jacobs Jr, D.H. Lee, Is serum gamma-glutamyltransferase inversely associated with serum antioxidants as a marker of oxidative stress? Free Radic. Biol. Med. 37, 1018–1023 (2004)CrossRef PubMed
    25.D.H. Lee, M.D. Gross, M.W. Steffes, D.R. Jacobs Jr, Is serum gammaglutamyltransferase a biomarker of xenobiotics, which are conjugated by glutathione? Arterioscler. Thromb. Vasc. Biol. 28, e26–e28 (2008)CrossRef PubMed
    26.K. Kolbe, R. Schonherr, G. Gessner, N. Sahoo, T. Hoshi, S.H. Heinemann, Cysteine 723 in the C-linker segment confers oxidative inhibition of hERG1 potassium channels. J. Physiol. 588, 2999–3009 (2010)CrossRef PubMed PubMedCentral
    27.M. Schönauer, A. Thomas, S. Morbach, J. Niebauer, U. Schönauer, H. Thiele, Cardiac autonomic diabetic neuropathy. Diabetes Vasc. Dis. Res. 5, 336–344 (2008)CrossRef
    28.S. Matsushima, S. Kinugawa, T. Ide, H. Matsusaka, N. Inoue, Y. Ohta, T. Yokota, K. Sunagawa, H. Tsutsui, Overexpression of glutathione peroxidase attenuates myocardial remodeling and preserves diastolic function in diabetic heart. Am. J. Physiol.-Heart. C 291, H2237–H2245 (2006)CrossRef
    29.J. Chen, J. Sroubek, Y. Krishnan, Y. Li, J. Bian, T.V. McDonald, PKA phosphorylation of HERG protein regulates the rate of channel synthesis. Am. J. Physiol. Heart Circ. Physiol. 296, H1244–H1254 (2009)CrossRef PubMed PubMedCentral
    30.D.A. Saint, The role of the persistent Na+ current during cardiac ischemia and hypoxia. J. Cardiovasc. Electrophysiol. 17, S96–S103 (2006)CrossRef PubMed
    31.Report and Recommendations of the San Antonio Conference on Diabetic Neuropathy: American Diabetes Association and American Academy of Neurology (Consensus Statement). Diabetes Care 11, 592–597 (1988)
    32.F.M. Brown, M. Watts, S.L. Rabinowe, Aggregation of subclinical autonomic nervous system dysfunction and autoantibodies in families with type I diabetes. Diabetes 40, 1611–1614 (1991)CrossRef PubMed
    33.J. Fleischer, Diabetic autonomic imbalance and glycemic variability. J. Mech. Sci. Technol. 6, 1207–1215 (2012)
    34.G. Bujag, M. Miorelli, P. Turrini, P. Melacini, A. Nova, Comparison of QT dispersion in hypertrophic cardiomyopathy between patients with and without ventricular arrhythmias and sudden death. Am. J. Cardiol. 72, 973–976 (1993)CrossRef
    35.R. Kumar, M. Fisher, P.W. Macfarlane, Diabetes and the QT interval: time for debate. Br. J. Diabetes Vasc. Dis. 4, 146–150 (2004)CrossRef
    36.J.B. Whitfield, Serum γ-glutamyltransferase and risk of disease. Clin. Chem. 53, 1–2 (2007)CrossRef PubMed
    37.G. Targher, L. Bertolini, F. Poli, S. Rodella, L. Scala, R. Tessari, L. Zenari, G. Falezza, Nonalcoholic fatty liver disease and risk of future cardiovascular events among type 2 diabetic patients. Diabetes 54, 354–3546 (2005)CrossRef
  • 作者单位:Kun Wang (1)
    Ling Li (2)
    Yang Wu (3)
    Yu Yang (1)
    Jie Chen (1)
    Danyu Zhang (1)
    Zhoujun Liu (1)
    Juan Xu (1)
    Meng Cao (1)
    Xiaodong Mao (1)
    Chao Liu (1)

    1. Department of Endocrinology, Affiliated Hospital on Integration of Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, 100, Hongshan Road, Nanjing, 210028, China
    2. Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, 87, Dingjiaqiao Road, Nanjing, 210009, China
    3. Department of Endocrinology, The First People’s Hospital of Changzhou, Third Affiliated Hospital of Suzhou University, 185, Juqian Road, Changzhou, 213003, China
  • 刊物主题:Endocrinology; Diabetes; Internal Medicine; Science, general;
  • 出版者:Springer US
  • ISSN:1559-0100
文摘
The purpose of our study is to examine the association between serum GGT levels and ventricular instability in Chinese patients with T2DM. We conducted a cross-sectional, community-based study in Nanjing, China from June to November 2011. Among 10,050 patients aged 40–79 years, we enrolled 2444 with pre-diabetes, 2496 with T2DM, and 4521 without diabetes (non-diabetes). Electrocardiograms were performed to measure the QT interval corrected for heart rate (QTc) and QT interval dispersion (QTd). Serum GGT levels, metabolic parameters, body mass index, and blood pressure were also measured. We found that there were no significant associations of increased QTc/QTd with serum GGT levels in participants with pre-existing T2DM and non-diabetes, after adjusting for age, duration of diabetes, and metabolic parameters. Even after adjustment, higher risks of QTc ≥ 440 ms/√s and QTd ≥ 58 ms were found in participants with serum GGT levels ≥49 U/L compared with those with <15 U/L in the pre-diabetes (QTc: OR 1.96, 95 % CI 1.23–2.47; QTd: OR 1.34, 95 % CI 1.07–1.94) and newly diagnosed T2DM (QTc: OR 2.01, 95 % CI 1.39–2.51; QTd: OR 1.53, 95 % CI 1.03–1.99) groups. We conclude that Increased serum GGT levels are associated with some markers of ventricular repolarization abnormalities in the early stage of T2DM.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.