Insulin induces Ca2+ oscillations in white fat adipocytes via PI3K and PLC
详细信息    查看全文
  • 作者:E. A. Turovsky ; M. V. Turovskaya…
  • 关键词:insulin ; [Ca2+]i oscillations ; phosphoinositide 3 ; kinase (PI3K) ; protein kinase B (Akt/PKB) ; endothelial NO synthase (eNOS) ; inositol 3 ; phosphate receptor (IP3R)
  • 刊名:Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:10
  • 期:1
  • 页码:53-59
  • 全文大小:602 KB
  • 参考文献:1.White M.F. 1997. The insulin signalling system and the IRS proteins. Diabetologia. 40, 2–17.CrossRef
    2.Sun X.J., Rothenberg P., Kahn CR., Backer J.M., Araki E., Wilden P.A., Cahill D.A., Goldstein B.J., White M.F. 1991. Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature. 352, 73–77.CrossRef PubMed
    3.Giorgetti S., Ballotti R., Kowalski-Chauvel A., Cormont M., van Obberghen E. 1992. Insulin stimulates phosphatidylinositol-3-kinase activity in rat adipocytes. Eur. J. Biochem. 207 (2), 599–606.CrossRef PubMed
    4.Vanhaesebroeck B., Alessi D.R. 2000. The PI3KPDK1 connection: More than just a road to PKB. J. Biochem. 346, 561–576.
    5.Cohen P., Alessi D.R., Cross D.A. 1997. PDK1, one of the missing links in insulin signal transduction? FEBS Lett. 410, 3–10.CrossRef PubMed
    6.Hajduch E., Litherland G.J., Hundal HS. 2001. Protein kinase B (PKB/Akt)–a key regulator of glucose transport? FEBS Lett. 492, 199–203.CrossRef PubMed
    7.Dolgacheva L.P., Turovsky E.A., Turovskaya M.V., Zinchenko V.P., Dynnik V.V. 2012. a-Adrenergic control of two Ca2+-signaling pathways of adipocytes. Ross. Fiziol. Zh. im. I.M. Sechenova (Rus.). 98 (12), 47–54.
    8.Turovsky E.A., Turovskaya M.V., Dolgacheva L.P., Zinchenko V.P., Dynnik V.V. 2013. Acetylcholine promotes Ca2+ and NO-oscillations in adipocytes implicating Ca2+ NO cGMP cADP-ribose Ca2+ positive feedback loop–modulatory effects of norepinephrine and atrial natriuretic peptide. PLoS One. 8 (5), 1–18.CrossRef
    9.Turovsky E.A., Turovskaya M.V., Tolmacheva A.V., Dolgacheva L.P., Zinchenko V.P., Dynnik V.V. 2013. Resistance of mouse adipocytes to noradrenalin in obesity and type 2 diabetes mellitus. Fundamental’nye issledovaniya (Rus.). 1 (3), 595–599.
    10.Trevellin E., Scorzeto M., Olivieri M., Granzotto M., Valerio A., Tedesco L., Fabris R., Serra R., Quarta M., Reggiani C., Nisoli E., Vettor R. 2014. Exercise training induces mitochondrial biogenesis and glucose uptake in subcutaneous adipose tissue through eNOS-dependent mechanisms. Diabetes. 63 (8), 2800–2811.CrossRef PubMed
    11.Nagano T., Yoshimura T. 2002. Bioimaging of nitric oxide. Chem. Rev. 102 (4), 1235–1270.CrossRef PubMed
    12.Fulton D., Gratton J.P., McCabe T.J., Fontana J., Fujio Y., Walsh K., Franke T.F., Papapetropoulos A., Sessa W.C. 1999. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature. 399 (6736), 597–601.PubMedCentral CrossRef PubMed
    13.Dimmeler S., Fleming I., Fisslthaler B., Hermann C., Busse R., Zeiher A.M. 1999. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 399 (6736), 601–605.CrossRef PubMed
    14.Prakash Y.S., Kannan M.S., Walseth T.F., Sieck G.C. 1998. Role of cyclic ADP-ribose in the regulation of [Ca2+]i in porcine tracheal smooth muscle. Am. J. Physiol. 274 (6), 1653–1660.
    15.Jung U.J., Choi M.S. 2014. Obesity and its metabolic complications: The role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int. J. Mol. Sci. 15 (4), 6184–223.PubMedCentral CrossRef PubMed
    16.Lillioja S., Mott D.M., Spraul M., Ferraro R., Foley J.E., Ravussin E., Knowler W.C., Bennett P.H., Bogardus C. 1993. Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 1988–1992.CrossRef PubMed
    17.Cheatham B., Vlahos C., Cheatham L., Wang L., Blenis J., Kahn C. 1994. Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation. Mol. Cell. Biol. 14, 4902–4911.PubMedCentral CrossRef PubMed
    18.Okada T., Kawano Y., Sakakibara T., Hazeki O., Ui M. 1994. Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin. J. Biol. Chem. 269, 3568–3573.PubMed
    19.Alessi D.R., Downes C.P. 1998. The role of PI 3-kinase in insulin action. Biochim. Biophys. Acta. 1436, 151–164.CrossRef PubMed
    20.Whiteman E.L., Cho H., Birnbaum M.J. 2002. Role of Akt/protein kinase B in metabolism. Trends Endocrinol. Metab. 13, 444–451.CrossRef PubMed
    21.Gonzalez E., McGraw T.E. 2009. The Akt kinases: Isoform specificity in metabolism and cancer. Cell Cycle. 8 (16), 2502–2508.PubMedCentral CrossRef PubMed
    22.Hanada M., Feng J., Hemmings B.A. 2004. Structure, regulation and function of PKB/Akt–a major therapeutic target. Biochim. Biophys. Acta. 1697, 3–16.CrossRef PubMed
    23.Manning B.D., Cantley L.C. 2007. Akt/PKB signaling: Navigating downstream. Cell. 129, 1261–1274.PubMedCentral CrossRef PubMed
    24.Pfeffer S., Aivazian D. 2004. Targeting Rab GTPases to distinct membrane compartments. Nat. Rev. Mol. Cell. Biol. 5, 886–896.CrossRef PubMed
    25.Stenmark H. 2009. Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell. Biol. 10, 513–525.CrossRef PubMed
    26.Zerial M., McBride H. 2001. Rab proteins as membrane organizers. Nat. Rev. Mol. Cell. Biol. 2, 107–117.CrossRef PubMed
    27.Kane S., Sano H., Liu S.C., Asara J.M., Lane W.S., Garner C.C., Lienhard G.E. 2002. A method to identify serine kinase substrates. Akt phosphorylates a novel adipocyte protein with a Rab GTPase-activating protein (GAP) domain. J. Biol. Chem. 277, 22115–22118.PubMed
    28.Tan S.X., Ng Y., Burchfield J.G., Ramm G., Lambright D.G., Stockli J., James D.E. 2012. The Rab GTPase-activating protein TBC1D4/AS160 contains an atypical phosphotyrosine-binding domain that interacts with plasma membrane phospholipids to facilitate GLUT4 trafficking in adipocytes. Mol. Cell. Biol. 32 (24), 4946–4959.PubMedCentral CrossRef PubMed
    29.Yu H., Rathore S.S., Davis E.M., Ouyang Y., Shen J. 2013. Doc2b promotes GLUT4 exocytosis by activating the SNARE-mediated fusion reaction in a calciumand membrane bending-dependent manner. Mol. Biol. Cell. 24 (8), 1176–1184.PubMedCentral CrossRef PubMed
    30.Roy D., Perreault M., Marette A. 1998. Insulin stimulation of glucose uptake in skeletal muscles and adipose tissues in vivo is NO dependent. Am. J. Physiol. 274 (4 Pt 1), 692–699.
    31.Hong Y.H., Betik A.C., McConell G.K. 2014. Role of nitric oxide in skeletal muscle glucose uptake during exercise. Exp. Physiol. 99 (12), 1569–1573.CrossRef PubMed
    32.Masters B.S.S., McMillan K., Sheta E.A., Nishimura J.S., Roman L.J., Martasek P. 1996. Neuronal nitric oxide synthase, a modular enzyme formed by convergent evolution: Structure studies of a cysteine thiolate-liganded heme protein that hydroxylates L-arginine to produce NO as a cellular signal. FASEB J. 10, 552–558.PubMed
    33.Fleming I. 2010. Molecular mechanisms underlying the activation of eNOS. Pflügers Archiv. 459, 793–806.CrossRef PubMed
    34.Forstermann U., Sessa W.C. 2012. Nitric oxide synthases: Regulation and function. Eur. Heart J. 33, 829–837.PubMedCentral CrossRef PubMed
    35.Venema R.C., Sayegh H.S., Kent J.D., Harrison D.G. 1996. Identification, characterization, and comparison of the calmodulin-binding domains of the endothelial and inducible nitric oxide synthases. J. Biol. Chem. 271, 6435–6440.CrossRef PubMed
  • 作者单位:E. A. Turovsky (1)
    M. V. Turovskaya (1)
    V. P. Zinchenko (1) (2)
    V. V. Dynnik (1) (3)
    L. P. Dolgacheva (1) (2)

    1. Institute of Cell Biophysics, Russian Academy of Sciences, ul. Institutskaya 3, Pushchino, Moscow oblast, 142290, Russia
    2. Pushchino State Institute of Natural Sciences, ul. Institutskaya 3, Pushchino, Moscow oblast, 142290, Russia
    3. Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, ul. Institutskaya 3, Pushchino, Moscow oblast, 142290, Russia
  • 刊物主题:Cell Biology;
  • 出版者:Springer US
  • ISSN:1990-7494
文摘
Adipocytes of white adipose tissue are the cells maintaining glucose homeostasis in an organism, which is controlled by insulin. Insulin stimulates the translocation of glucose transporter GLUT4 from the cytosol into the cell membrane, as well as glucose transport and utilization in these cells. Here we show that insulin-induced [Ca2+]i oscillations are supported by the two signaling pathways involving: (1) phosphoinositide 3-kinase (PI3K), protein kinase B (Akt/PKB), endothelial NO synthase (eNOS), nitric oxide (NO), and ryanodine receptor (RyR) and (2) phospholipase C (PLC) and inositol 3-phosphate receptor (IP3R). Thus, the PI3K Akt/PKB signaling pathway initiates not only metabolic but also Ca2+-signaling pathways in response to insulin.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.