Differences in UGT1A1, UGT1A7, and UGT1A9 Polymorphisms between Uzbek and Japanese Populations
详细信息    查看全文
  • 作者:Hiromichi Maeda (1)
    Shoichi Hazama (2)
    Abdiev Shavkat (3)
    Ken Okamoto (1)
    Koji Oba (4)
    Junichi Sakamoto (5)
    Kenichi Takahashi (6)
    Masaki Oka (2)
    Daisuke Nakamura (7)
    Ryouichi Tsunedomi (2)
    Naoko Okayama (8)
    Hideyuki Mishima (9)
    Michiya Kobayashi (1)
  • 刊名:Molecular Diagnosis & Therapy
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:18
  • 期:3
  • 页码:333-342
  • 全文大小:
  • 参考文献:1. Douillard JY, Cunningham D, Roth AD, Navarro M, James RD, Karasek P, Jandik P, Iveson T, Carmichael J, Alakl M, Gruia G, Awad L, Rougier P. Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet. 2000;355:1041-. CrossRef
    2. Saltz LB, Cox JV, Blanke C, Rosen LS, Fehrenbacher L, Moore MJ, Maroun JA, Ackland SP, Locker PK, Pirotta N, Elfring GL, Miller LL. Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan Study Group. N Engl J Med. 2000;343:905-4. CrossRef
    3. Dranitsaris G, Shah A, Spirovski B, Vincent M. Severe diarrhea in patients with advanced-stage colorectal cancer receiving FOLFOX or FOLFIRI chemotherapy: the development of a risk prediction tool. Clin Colorectal Cancer. 2007;6:367-3. CrossRef
    4. Shiozawa T, Tadokoro J, Fujiki T, Fujino K, Kakihata K, Masatani S, Morita S, Gemma A, Boku N. Risk factors for severe adverse effects and treatment-related deaths in Japanese patients treated with irinotecan-based chemotherapy: a postmarketing survey. Jpn J Clin Oncol. 2013;43:483-1. CrossRef
    5. Ando Y, Saka H, Ando M, Sawa T, Muro K, Ueoka H, Yokoyama A, Saitoh S, Shimokata K, Hasegawa Y. Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res. 2000;60:6921-.
    6. Okuyama Y, Hazama S, Nozawa H, Kobayashi M, Takahashi K, Fujikawa K, Kato T, Nagata N, Kimura H, Oba K, Sakamoto J, Mishima H. Prospective phase II study of FOLFIRI for mCRC in Japan, including the analysis of UGT1A1 28/6 polymorphisms. Jpn J Clin Oncol. 2011;41:477-2. CrossRef
    7. Toffoli G, Cecchin E, Corona G, Russo A, Buonadonna A, D’Andrea M, Pasetto LM, Pessa S, Errante D, De Pangher V, Giusto M, Medici M, Gaion F, Sandri P, Galligioni E, Bonura S, Boccalon M, Biason P, Frustaci S. The role of UGT1A1*28 polymorphism in the pharmacodynamics and pharmacokinetics of irinotecan in patients with metastatic colorectal cancer. J Clin Oncol. 2006;24:3061-. CrossRef
    8. Cecchin E, Innocenti F, D’Andrea M, Corona G, De Mattia E, Biason P, Buonadonna A, Toffoli G. Predictive role of the UGT1A1, UGT1A7, and UGT1A9 genetic variants and their haplotypes on the outcome of metastatic colorectal cancer patients treated with fluorouracil, leucovorin, and irinotecan. J Clin Oncol. 2009;27:2457-5. CrossRef
    9. Inoue K, Sonobe M, Kawamura Y, Etoh T, Takagi M, Matsumura T, Kikuyama M, Kimura M, Minami S, Utsuki H, Yamazaki T, Suzuki T, Tsuji D, Hayashi H, Itoh K. Polymorphisms of the UDP-glucuronosyl transferase 1A Genes are associated with adverse events in cancer patients receiving irinotecan-based chemotherapy. Tohoku J Exp Med. 2013;229:107-4. CrossRef
    10. Iyer L, Das S, Janisch L, Wen M, Ramírez J, Karrison T, Fleming GF, Vokes EE, Schilsky RL, Ratain MJ. UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenomics J. 2002;2:43-. CrossRef
    11. Hazama S, Nagashima A, Kondo H, Yoshida S, Shimizu R, Araki A, Yoshino S, Okayama N, Hinoda Y, OkaPhase M. Phase I, study of irinotecan and doxifluridine for metastatic colorectal cancer focusing on the UGT1A1*28 polymorphism. Cancer Sci. 2010;101:722-. CrossRef
    12. Araki K, Fujita K, Ando Y, Nagashima F, Yamamoto W, Endo H, Miya T, Kodama K, Narabayashi M, Sasaki Y. Pharmacogenetic impact of polymorphisms in the coding region of the UGT1A1 gene on SN-38 glucuronidation in Japanese patients with cancer. Cancer Sci. 2006;97:1255-. CrossRef
    13. Onoue M, Terada T, Kobayashi M, Katsura T, Matsumoto S, Yanagihara K, Nishimura T, Kanai M, Teramukai S, Shimizu A, Fukushima M, Inui K. UGT1A1*6 polymorphism is most predictive of severe neutropenia induced by irinotecan in Japanese cancer patients. Int J Clin Oncol. 2009;14:136-2. CrossRef
    14. Kawato Y, Aonuma M, Hirota Y, Kuga H, Sato K. Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in the antitumor effect of CPT-11. Cancer Res. 1991;51:4187-1.
    15. Gupta E, Lestingi TM, Mick R, Ramirez J, Vokes EE, Ratain MJ. Metabolic fate of irinotecan in humans: correlation of glucuronidation with diarrhea. Cancer Res. 1994;54:3723-.
    16. Iyer L, King CD, Whitington PF, Green MD, Roy SK, Tephly TR, Coffman BL, Ratain MJ. Genetic predisposition to the metabolism of irinotecan (CPT-11). Role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. J Clin Invest. 1998;101:847-4. CrossRef
    17. Pacheco PR, Brilhante MJ, Ballart C, Sigalat F, Polena H, Cabral R, Branco CC, Mota-Vieira L. UGT1A1, UGT1A6 and UGT1A7 genetic analysis: repercussion for irinotecan pharmacogenetics in the S?o Miguel Island Population (Azores, Portugal). Mol Diagn Ther. 2009;13:261-. CrossRef
    18. Bosma PJ, Chowdhury JR, Bakker C, Gantla S, de Boer A, Oostra BA, Lindhout D, Tytgat GN, Jansen PL, Oude Elferink RP, Chowdhury NR. The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert’s syndrome. N Engl J Med. 1995;333:1171-. CrossRef
    19. Gagné JF, Montminy V, Belanger P, Journault K, Gaucher G, Guillemette C. Common human UGT1A polymorphisms and the altered metabolism of irinotecan active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38). Mol Pharmacol. 2002;62:608-7. CrossRef
    20. Hazama S, Mishima H, Tsunedomi R, Okuyama Y, Kato T, Takahashi KI, Nozawa H, Ando H, Kobayashi M, Takemoto H, Nagata N, Kanekiyo S, Inoue Y, Hamamoto Y, Fujita Y, Hinoda Y, Okayama N, Oba K, Sakamoto JI, Oka M. UGT1A1*6, 1A7*3, and 1A9*22 genotypes predict severe neutropenia in FOLFIRI-treated metastatic colorectal cancer in two prospective studies in Japan. Cancer Sci. 2013 (Epub ahead of print).
    21. Kobayashi M, Hazama S, Takahashi K, Oba K, Okayama N, Nishioka M, Hinoda Y, Oka M, Okamoto K, Maeda H, Nakamura D, Sakamoto J, Mishima H. Is there diversity among UGT1A1 polymorphism in Japan? World J Gastrointest Oncol. 2012;4:170-. CrossRef
    22. Clarke DJ, Burchell B. The Uridine diphosphate glucronosyltransferase multigene families: function and regulation. In: Kaufmann FC, editor. Handbook of experimental pharmacology. Berlin: Springer; 1994. p. 3-3.
    23. Horsfall LJ, Zeitlyn D, Tarekegn A, Bekele E, Thomas MG, Bradman N, Swallow DM. Prevalence of clinically relevant UGT1A alleles and haplotypes in African populations. Ann Hum Genet. 2011;75:236-6. CrossRef
    24. Premawardhena A, Fisher CA, Liu YT, Verma IC, de Silva S, Arambepola M, Clegg JB, Weatherall DJ. The global distribution of length polymorphisms of the promoters of the glucuronosyltransferase 1 gene (UGT1A1): hematologic and evolutionary implications. Blood Cells Mol Dis. 2003;31:98-01. CrossRef
    25. Kaniwa N, Kurose K, Jinno H, Tanaka-Kagawa T, Saito Y, Saeki M, Sawada J, Tohkin M, Hasegawa R. Racial variability in haplotype frequencies of UGT1A1 and glucuronidation activity of a novel single nucleotide polymorphism 686C> T (P229L) found in an African-American. Drug Metab Dispos. 2005;33:458-5. CrossRef
    26. Saeki M, Saito Y, Jinno H, Sai K, Ozawa S, Kurose K, Kaniwa N, Komamura K, Kotake T, Morishita H, Kamakura S, Kitakaze M, Tomoike H, Shirao K, Tamura T, Yamamoto N, Kunitoh H, Hamaguchi T, Yoshida T, Kubota K, Ohtsu A, Muto M, Minami H, Saijo N, Kamatani N, Sawada JI. Haplotype structures of the UGT1A gene complex in a Japanese population. Pharmacogenomics J. 2006;6:63-5. CrossRef
    27. Zhang A, Xing Q, Qin S, Du J, Wang L, Yu L, Li X, Xu L, Xu M, Feng G, He L. Intra-ethnic differences in genetic variants of the UGT-glucuronosyltransferase 1A1 gene in Chinese populations. Pharmacogenomics J. 2007;7:333-. CrossRef
    28. Lamas MJ, Duran G, Balboa E, Bernardes B, Candamio S, Vidal Y, Mosquera A, Giraldez JM, Lopez R, Carracedo A, Barros F. The value of genetic polymorphisms to predict toxicity in metastatic colorectal patients with irinotecan-based regimens. Cancer Chemother Pharmacol. 2012;69:1591-. CrossRef
    29. Han JY, Lim HS, Shin ES, Yoo YK, Park YH, Lee JE, Jang IJ, Lee DH, Lee JS. Comprehensive analysis of UGT1A polymorphisms predictive for pharmacokinetics and treatment outcome in patients with non-small-cell lung cancer treated with irinotecan and cisplatin. J Clin Oncol. 2006;24:2237-4. CrossRef
    30. D’Silva S, Colah RB, Ghosh K, Mukherjee MB. UDP-glucuronosyltransferase 1A1 (UGT1A1) gene haplotypes and their effect on serum bilirubin concentration in healthy Indian adults. Gene. 2013;513:36-. CrossRef
    31. Teh LK, Hashim H, Zakaria ZA, Salleh MZ. Polymorphisms of UGT1A1*6, UGT1A1*27 & UGT1A1*28 in three major ethnic groups from Malaysia. Indian J Med Res. 2012;136:249-9.
    32. Innocenti F, Kroetz DL, Schuetz E, Dolan ME, Ramírez J, Relling M, Chen P, Das S, Rosner GL, Ratain MJ. Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics. J Clin Oncol. 2009;1(27):2604-4. CrossRef
    33. Yamanaka H, Nakajima M, Katoh M, Hara Y, Tachibana O, Yamashita J, McLeod HL, Yokoi T. A novel polymorphism in the promoter region of human UGT1A9 gene (UGT1A9*22) and its effects on the transcriptional activity. Pharmacogenetics. 2004;14:329-2. CrossRef
    34. Fujita K, Ando Y, Nagashima F, Yamamoto W, Eodo H, Araki K, Kodama K, Miya T, Narabayashi M, Sasaki Y. Genetic linkage of UGT1A7 and UGT1A9 polymorphisms to UGT1A1*6 is associated with reduced activity for SN-38 in Japanese patients with cancer. Cancer Chemother Pharmacol. 2007;60:515-2. CrossRef
    35. Carlini LE, Meropol NJ, Bever J, Andria ML, Hill T, Gold P, Rogatko A, Wang H, Blanchard RL. UGT1A7 and UGT1A9 polymorphisms predict response and toxicity in colorectal cancer patients treated with capecitabine/irinotecan. Clin Cancer Res. 2005;11:1226-6.
    36. K?hle C, M?hrle B, Münzel PA, Schwab M, Wernet D, Badary OA, Bock KW. Frequent co-occurrence of the TATA box mutation associated with Gilbert’s syndrome (UGT1A1*28) with other polymorphisms of the UDP-glucuronosyltransferase-1 locus (UGT1A6*2 and UGT1A7*3) in Caucasians and Egyptians. Biochem Pharmacol. 2003;65:1521-. CrossRef
    37. Araki J, Kobayashi Y, Iwasa M, Urawa N, Gabazza EC, Taguchi O, Kaito M, Adachi Y. Polymorphism of UDP-glucuronosyltransferase 1A7 gene: a possible new risk factor for lung cancer. Eur J Cancer. 2005;41:2360-. CrossRef
    38. Huang MJ, Yang SS, Lin MS, Huang CS. Polymorphisms of uridine-diphosphoglucuronosyltransferase 1A7 gene in Taiwan Chinese. World J Gastroenterol. 2005;11:797-02.
    39. Tang KS, Chiu HF, Chen HH, Eng HL, Tsai CJ, Teng HC, Huang CS. Link between colorectal cancer and polymorphisms in the uridine-diphosphoglucuronosyltransferase 1A7 and 1A1 genes. World J Gastroenterol. 2005;11:3250-.
    40. Sharma R, Ahuja M, Panda NK, Khullar M. Interactions among genetic variants in tobacco metabolizing genes and smoking are associated with head and neck cancer susceptibility in North Indians. DNA Cell Biol. 2011;30:611-. CrossRef
    41. Zheng Z, Park JY, Guillemette C, Schantz SP, Lazarus P. Tobacco carcinogen-detoxifying enzyme UGT1A7 and its association with orolaryngeal cancer risk. J Natl Cancer Inst. 2001;93:1411-. CrossRef
    42. Strassburg CP, Strassburg A, Nguyen N, Li Q, Manns MP, Tukey RH. Regulation and function of family 1 and family 2 UDP-glucuronosyltransferase genes (UGT1A, UGT2B) in human oesophagus. Biochem J. 1999;338:489-8. CrossRef
  • 作者单位:Hiromichi Maeda (1)
    Shoichi Hazama (2)
    Abdiev Shavkat (3)
    Ken Okamoto (1)
    Koji Oba (4)
    Junichi Sakamoto (5)
    Kenichi Takahashi (6)
    Masaki Oka (2)
    Daisuke Nakamura (7)
    Ryouichi Tsunedomi (2)
    Naoko Okayama (8)
    Hideyuki Mishima (9)
    Michiya Kobayashi (1)

    1. Department of Human Health and Medical Sciences, Kochi Medical School, Kohasu, Oko-cho, Nankoku, 783-8505, Japan
    2. Department of Digestive Surgery and Surgical Oncology (Surgery II), Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan
    3. Nozaki Tokushukai Hospital, Daito, 574-0074, Japan
    4. Translational Research and Clinical Trial Center, Hokkaido University Hospital, Sapporo, 060-8638, Japan
    5. Tokai Central Hospital, Kakamigahara, 504-8601, Japan
    6. Department of Surgery, Aomori Prefectural Central Hospital, Aomori, 030-8553, Japan
    7. Chikamori Hospital, Kochi, 780-8522, Japan
    8. Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan
    9. Department of Surgery, Osaka National Hospital, Osaka, 565-0871, Japan
  • ISSN:1179-2000
文摘
Background and Objectives Uridine-diphosphate glucuronosyltransferase 1A (UGT1A) is a key enzyme involved in irinotecan metabolism, and polymorphisms in the UGT1A gene are associated with irinotecan-induced toxicity. The aim of this study was to elucidate the allele frequencies of UGT1A polymorphisms in healthy Uzbek volunteers, and to compare them with those of the Japanese population. Method A total of 97 healthy volunteers from Uzbekistan were enrolled and blood samples were collected from each participant. Genotyping analysis was performed by fragment size analysis for UGT1A1*28, direct sequencing for UGT1A7*3 and UGT1A9*22, and TaqMan assays for UGT1A1*93, UGT1A1*6, UGT1A1*27, UGT1A1*60, and UGT1A7*12. The frequencies of polymorphisms were compared with the Japanese population by using the data previously reported from our study group. Results When the Uzbek and Japanese populations were compared, heterozygotes or homozygotes for UGT1A1*28, UGT1A1*60, and UGT1A1*93 were significantly more frequent in the Uzbek population (P?<?0.01). The rate of UGT1A7*12 was not significantly different between the two populations, whereas UGT1A1*6 and UGT1A9*22 were significantly less frequent in the Uzbek population (P?<?0.05). UGT1A7*1 were less prevalent in the Uzbek population than in the Japanese population (P?<?0.01). Conclusion The Uzbek population has different frequencies of polymorphisms in UGT1A genes compared with the Japanese population. A comprehensive study of the influence of UGT1A1 polymorphisms on the risk of irinotecan-induced toxicity is necessary for optimal use of irinotecan treatment.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.