Smooth brome changes gross soil nitrogen cycling processes during invasion of a rough fescue grassland
详细信息    查看全文
  • 作者:Candace L. Piper (1)
    Eric G. Lamb (1)
    Steven D. Siciliano (2)

    1. Department of Plant Sciences
    ; University of Saskatchewan ; 51 Campus Dr. ; Saskatoon ; SK ; S7N 5A8 ; Canada
    2. Department of Soil Science
    ; University of Saskatchewan ; 51 Campus Dr. ; Saskatoon ; SK ; S7N 5A8 ; Canada
  • 关键词:Ammonia ; oxidizing bacteria and archaea ; Bromus inermis ; Grassland ; Invasive species ; Nitrogen cycling ; Soil microbial community
  • 刊名:Plant Ecology
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:216
  • 期:2
  • 页码:235-246
  • 全文大小:419 KB
  • 参考文献:1. Accoe F, Boeckx P, Busschaert J, Hofman G, Van Cleemput O (2004) Gross N transformation rates and net N mineralisation rates related to the C and N contents of soil organic matter fractions in grassland soils of different age. Soil Biol Biochem 36:2075鈥?087 CrossRef
    2. Agriculture and Agri-Food Canada (2010) Soils of Canada. Agriculture and Agri-Food Canada: Canadian Soil Information Service
    3. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233鈥?66 CrossRef
    4. Banerjee S, Siciliano SD (2012) Factors driving potential ammonia oxidation in Canadian Arctic ecosystems: does spatial scale matter? Appl Environ Microbiol 78:346鈥?53 CrossRef
    5. Bedard-Haughn A, Matson AL, Pennock DJ (2006) Land use effects on gross nitrogen mineralization, nitrification, and N2O emissions in ephemeral wetlands. Soil Biol Biochem 38:3398鈥?406 CrossRef
    6. Bedard-Haughn A, Comeau L-P, Sangster A (2013) Gross nitrogen mineralization in pulse-crop rotations on the Northern Great Plains. Nutr Cycl Agroecosyst 95:159鈥?74 CrossRef
    7. Belnap J, Phillips SL (2001) Soil biota in an ungrazed grassland: response to annual grass ( / Bromus tectorum) invasion. Ecol Appl 11:1261鈥?275 CrossRef
    8. Booth MS, Stark JM, Rastetter E (2005) Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecol Monogr 75:139鈥?57 CrossRef
    9. Bradford M, Strickland M, DeVore J, Maerz J (2012) Root carbon flow from an invasive plant to belowground foodwebs. Plant Soil 359:233鈥?44 CrossRef
    10. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611鈥?22 CrossRef
    11. Callaway RM, Aschehoug ET (2000) Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290:521鈥?23 CrossRef
    12. Corbin JD, D鈥橝ntonio CM (2004) Effects of exotic species on soil nitrogen cycling: implications for restoration. Weed Technol 18:1464鈥?467 CrossRef
    13. Cornelissen JHC (1996) An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J Ecol 84:573鈥?82 CrossRef
    14. Couteaux M-M, Bottner P, Berg B (1995) Litter decomposition, climate and liter quality. Trends Ecol Evol 10:63鈥?6 CrossRef
    15. Davidson EA, Hart SC, Shanks CA, Firestone MK (1991) Measuring gross nitrogen mineralization, and nitrification by 15 N isotopic pool dilution in intact soil cores. J Soil Sci 42:335鈥?49 CrossRef
    16. Di HJ, Cameron KC, Shen JP, Winefield CS, O鈥機allaghan M, Bowatte S, He JZ (2009) Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nat Geosci 2:621鈥?24 CrossRef
    17. Di HJ, Cameron KC, Shen J-P, Winefield CS, O鈥機allaghan M, Bowatte S, He J-Z (2010) Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiol Ecol 72:386鈥?94 CrossRef
    18. Duda JJ, Freeman DC, Emlen JM, Belnap J, Kitchen SG, Zak JC, Sobek E, Tracy M, Montante J (2003) Differences in native soil ecology associated with invasion of the exotic annual chenopod, / Halogeton glomeratus. Biol Fertil Soils 38:72鈥?7 CrossRef
    19. Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503鈥?23 CrossRef
    20. Ehrenfeld JG (2010) Ecosystem consequences of biological invasions. Annu Rev Ecol Evol Syst 41:59鈥?0 CrossRef
    21. Evans RD, Rimer R, Sperry L, Belnap J (2001) Exotic plant invasion alters nitrogen dynamics in an arid grassland. Ecol Appl 11:1301鈥?310 CrossRef
    22. Eviner V (2004) Plant traits that influence ecosystem processes vary independently among species. Ecology 85:2215鈥?229 CrossRef
    23. Facelli JM, Pickett STA (1991) Plant litter: its dynamics and effects on plant community structure. Bot Rev 57:1鈥?2 CrossRef
    24. Fink KA, Wilson SD (2011) / Bromus inermis invasion of a native grassland: diversity and resource reduction. Botany 89:157鈥?64 CrossRef
    25. Grilz PL, Romo JT (1995) Management considerations for controlling smooth brome in fescue prairie. Nat Areas J 15:148鈥?56
    26. Groffman PM, Rice CW, Tiedje JM (1993) Denitrification in a tallgrass prairie landscape. Ecology 74:855鈥?62 CrossRef
    27. Hawkes CV, Wren IF, Herman DJ, Firestone MK (2005) Plant invasion alters nitrogen cycling by modifying the soil nitrifying community. Ecol Lett 8:975鈥?76 CrossRef
    28. Hodge A, Robinson D, Fitter A (2000) Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci 5:304鈥?08 CrossRef
    29. Horz H-P, Barbrook A, Field CB, Bohannan BJM (2004) Ammonia-oxidizing bacteria respond to multifactorial global change. Proc Natl Acad Sci USA 101:15136鈥?5141 CrossRef
    30. Inderjit, van der Putten WH (2010) Impacts of soil microbial communities on exotic plant invasions. Trends Ecol Evol 25:512鈥?19 CrossRef
    31. Kaye JP, Hart SC (1997) Competition for nitrogen between plants and soil microorganisms. Trends Ecol Evol 12:139鈥?43 CrossRef
    32. Knops JMH, Bradley KL, Wedin DA (2002) Mechanisms of plant species impacts on ecosystem nitrogen cycling. Ecol Lett 5:454鈥?66 CrossRef
    33. K枚chy M, Wilson SD (2001) Nitrogen deposition and forest expansion in the northern Great Plains. J Ecol 89:807鈥?17 CrossRef
    34. Kourtev PS, Ehrenfeld JG, Haggblom M (2002) Exotic plant species alter the microbial community structure and function in the soil. Ecology 83:3152鈥?166 CrossRef
    35. Lamb EG (2008) Direct and indirect control of species richness and evenness by litter, resources, and biomass. Ecology 89:216鈥?25 CrossRef
    36. Lamb EG, Kennedy N, Siciliano SD (2011) Effects of plant species richness and evenness on soil microbial community diversity and function. Plant Soil 338:483鈥?95 CrossRef
    37. Laungani R, Knops J (2009) Species-driven changes in nitrogen cycling can provide a mechanism for plant invasions. Proc Natl Acad Sci USA 106:12400鈥?2405 CrossRef
    38. Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806鈥?09 CrossRef
    39. Liao C, Peng R, Luo Y, Zhou X, Wu X, Fang C, Chen J, Li B (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol 177:706鈥?14 CrossRef
    40. Ma WK, Bedard-Haughn A, Siciliano SD, Farrell RE (2008) Relationship between nitrifier and denitrifier community composition and abundance in predicting nitrous oxide emissions from ephemeral wetland soils. Soil Biol Biochem 40:1114鈥?123 CrossRef
    41. Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes epidemiology, global consequences, and control. Ecol Appl 10:689鈥?10 CrossRef
    42. Mosier AR, Stillwell M, Parton WJ, Woodmansee RG (1981) Nitrous oxide emissions from a native shortgrass prairie. Soil Sci Soc Am J 45:617鈥?19 CrossRef
    43. Nosshi MI, Butler J, Trlica MJ (2007) Soil nitrogen mineralization not affected by grass species traits. Soil Biol Biochem 39:1031鈥?039 CrossRef
    44. Okano Y, Hristova KR, Leutenegger CM, Jackson LE, Denison RF, Gebreyesus B, Lebauer D, Scow KM (2004) Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Appl Environ Microbiol 70:1008鈥?016 CrossRef
    45. Otfinowski R, Kenkel NC (2008) Clonal integration facilitates the proliferation of smooth brome clones invading northern fescue prairies. Plant Ecol 199:235鈥?42 CrossRef
    46. Otfinowski R, Kenkel NC, Catling PM (2007) The biology of Canadian weeds. 134. / Bromus inermis Leyss. Can J Plant Sci 87:183鈥?98 CrossRef
    47. Park H-D, Wells GF, Bae H, Criddle CS, Francis CA (2006) Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Appl Environ Microbiol 72:5643鈥?647 CrossRef
    48. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Development Team (2012) nlme: Linear and nonlinear mixed effects models
    49. Piper CL (2013) Smooth brome invasion influences nitrogen cycling and soil bacterial community structure in a fescue grassland Plant Sciences. University of Saskatchewan, Saskatoon, p 144
    50. Redmann RE, Romo JT, Pylypec B, Driver EA (1993) Impacts of burning on primary productivity of Festuca and Stipa-Agropyron grasslands in central Saskatchewan. Am Midl Nat 130:262鈥?73 CrossRef
    51. Reynolds HL, Packer A, Bever JD, Clay K (2003) Grassroots ecology: plant鈥搈icrobe鈥搒oil interactions as drivers of plant community structure and dynamics. Ecology 84:2281鈥?291 CrossRef
    52. Rotthauwe J, Witzel K, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704鈥?712
    53. R Core Development Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
    54. Sanon A, Andrianjaka ZN, Prin Y, Bally R, Thioulouse J, Comte G, Duponnois R (2009) Rhizosphere microbiota interfers with plant鈥損lant interactions. Plant Soil 325:351鈥?52 CrossRef
    55. Scherer-Lorenzen M (2008) Functional diversity affects decomposition processes in experimental grasslands. Funct Ecol 22:547鈥?55 CrossRef
    56. Schleper C (2010) Ammonia oxidation: different niches for bacteria and archaea. ISME J 4:1092鈥?094 CrossRef
    57. Snell L, Guretzky J, Jin V, Drijber R, Mamo M (2014) Nitrous oxide emissions and herbage accumulation in smooth bromegrass pastures with nitrogen fertilizer and ruminant urine application. Nutr Cycl Agroecosyst 98:223鈥?34 CrossRef
    58. Stubbendieck JL, Hatch SL (1997) North American range plants. University of Nebraska Press, Lincoln
    59. Taylor AE, Zeglin LH, Wanzek TA, Myrold DD, Bottomley PJ (2012) Dynamics of ammonia-oxidizing archaea and bacteria populations and contributions to soil nitrification potentials. ISME J 6:2024鈥?032 CrossRef
    60. Vil脿 M, Espinar JL, Hejda M, Hulme PE, Jaro拧铆k V, Maron JL, Pergl J, Schaffner U, Sun Y, Py拧ek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702鈥?08 CrossRef
    61. Vinton M, Goergen E (2006) Plant鈥搒oil feedbacks contribute to the persistence of / Bromus inermis in tallgrass prairie. Ecosystems 9:967鈥?76 CrossRef
    62. Wardle DA (2002) Communities and ecosystems: linking the aboveground and belowground components. Princeton University Press, Princeton
    63. Wilson SD, Pinno BD (2013) Environmentally-contingent behaviour of invasive plants as drivers or passengers. Oikos 122:129鈥?35 CrossRef
    64. Wolfe BE, Klironomos JN (2005) Breaking new ground: soil communities and exotic plant invasion. Bioscience 55:477鈥?87 CrossRef
    65. Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003) Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84:2042鈥?052 CrossRef
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
  • 出版者:Springer Netherlands
  • ISSN:1573-5052
文摘
Invasive plants have variable effects on net nitrogen cycling, but how invasion alters gross N cycling is poorly understood. We examine how Bromus inermis (smooth brome) invasion affects gross N cycling rates and investigate potential mechanisms for the changes including relationships between smooth brome and ammonia-oxidizing bacteria (AOB) and archaea (AOA), plant community productivity, and litter quality. Gross nitrogen cycling rates, AOA and AOB population sizes, and plant community productivity were examined in native and invaded plots in smooth brome-invaded rough fescue grassland in central Saskatchewan, Canada. Despite no changes in inorganic nitrogen between invaded and native grassland soils, gross nitrogen mineralization rates and total soil nitrogen were higher in invaded soils. Invaded areas had greater plant productivity and litter production, which likely stimulated microbial activity and higher gross mineralization rates. Nitrification rates did not differ between invaded and native soils. Smooth brome had a weak positive effect on AOA in the B horizon but not in the A horizon, and AOB responded positively in both horizons. These results demonstrate that the full effects of plant invasion on soil N cycling may be masked in net N cycling rate measures.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.