Modeling a Shallow Solar Dynamo
详细信息    查看全文
文摘
Photospheric ephemeral regions (EPRs) cover the Sun like a magnetic carpet. From this, we update the Babcock – Leighton solar dynamo. Rather than sunspot fields appearing in the photosphere de novo from eruptions originating in the deep interior, we consider that sunspots form directly in the photosphere by a rapid accumulation of like-sign field from EPRs. This would only occur during special circumstances: locations and times when the temperature structure is highly superadiabatic and contains a large subsurface horizontal magnetic field (only present in the Sun’s lower latitudes). When these conditions are met, superadiabatic percolation occurs, wherein an inflow and downflow of gas scours the surface of EPRs to form active regions. When these conditions are not met, magnetic elements undergo normal percolation, wherein magnetic elements move about the photosphere in Brownian-type motions. Cellular automata (CA) models are developed that allow these processes to be calculated and thereby both small-scale and large-scale models of magnetic motions can be obtained. The small-scale model is compared with active region development and Hinode observations. The large-scale CA model offers a solar dynamo, which suggests that fields from decaying bipolar magnetic regions (BMRs) drift on the photosphere driven by subsurface magnetic forces. These models are related to observations and are shown to support Waldmeier’s findings of an inverse relationship between solar cycle length and cycle size. Evidence for significant amounts of deep magnetic activity could disprove the model presented here, but recent helioseismic observations of “butterfly patterns” at depth are likely just a reflection of surface activity. Their existence seems to support the contention made here that the field and flow separate, allowing cool, relatively field-free downdrafts to descend with little field into the nether worlds of the solar interior. There they heat by compression to form a hot solar-type Santa Ana wind deep below active regions.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.