An unconventional aging mechanism of nanoemulsions
详细信息    查看全文
  • 作者:Anna Klemmer ; Helge Klemmer ; Reinhard Strey ; Peter Schmiedel
  • 关键词:Microemulsion ; Nanoemulsion ; Low ; energy method ; Aging ; Linear radial growth
  • 刊名:Colloid & Polymer Science
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:293
  • 期:11
  • 页码:3199-3211
  • 全文大小:2,961 KB
  • 参考文献:1.Walstra, P. and P.E.A. Smulders (1998) Chapter 2 Emulsion formation, in Modern aspects of emulsion science, The Royal Society of Chemistry. p. 56-99
    2.Meleson K, Graves S, Mason TG (2004) Formation of concentrated nanoemulsions by extreme shear. Soft Mater 2(2-3):109–123CrossRef
    3.Rondón-González M et al (2006) Emulsion inversion from abnormal to normal morphology by continuous stirring without internal phase addition: effect of surfactant mixture fractionation at extreme water–oil ratio. Colloids Surf, A 288(1–3):151–157CrossRef
    4.Desrumaux A, Marcand J (2002) Formation of sunflower oil emulsions stabilized by whey proteins with high-pressure homogenization (up to 350 MPa): effect of pressure on emulsion characteristics. Int J Food Sci Technol 37(3):263–269CrossRef
    5.Floury J et al (2003) Effect of high pressure homogenisation on methylcellulose as food emulsifier. J Food Eng 58(3):227–238CrossRef
    6.Delmas T et al (2011) How to prepare and stabilize very small nanoemulsions. Langmuir 27(5):1683–1692CrossRef
    7.Jafari SM et al (2008) Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocolloids 22(7):1191–1202CrossRef
    8.Mason T et al (2006) Extreme emulsification: formation and structure of nanoemulsions. Condens Matter Phys 9(1):193–199CrossRef
    9.Bałdyga J et al (2007) Break up of nano-particle clusters in high-shear devices. Chem Eng Process: Process Intesif 46(9):851–861CrossRef
    10.Abismaı I et al (2000) Emulsification processes: on-line study by multiple light scattering measurements. Ultrasonics Sonochemistry 7(4):p. 187–192CrossRef
    11.Gramdorf S et al (2008) Crystallized miniemulsions: Influence of operating parameters during high-pressure homogenization on size and shape of particles. Colloids Surf, A 331(1–2):108–113CrossRef
    12.Schultz S et al (2004) High-pressure homogenization as a process for emulsion formation. Chem Eng Technol 27(4):361–368CrossRef
    13.Freudig B, Tesch S, Schubert H (2003) Production of emulsions in high-pressure homogenizers—part ii: influence of cavitation on droplet breakup. Eng Life Sci 3(6):266–270CrossRef
    14.Kentish S et al (2008) The use of ultrasonics for nanoemulsion preparation. Innovative Food Sci Emerg Technol 9(2):170–175CrossRef
    15.Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82(3):364–366CrossRef
    16.Charcosset C, Limayem I, Fessi H (2004) The membrane emulsification process—a review. J Chem Technol Biotechnol 79(3):209–218CrossRef
    17.Suzuki K, Shuto I, Hagura Y (1996) Characteristics of the membrane emulsification method combined with preliminary emulsification for preparing corn oil-in-water emulsions. Food Sci Technol Intl, Tokyo 2(1):43–47CrossRef
    18.Landfester K et al (2000) Polyaddition in miniemulsions: a new route to polymer dispersions. Macromol Chem Phys 201(1):1–5CrossRef
    19.Walstra P (1996) In: Becher P (ed) Encyclopedia of emulsion technology, vol 4. Dekker, New York
    20.Mason TG et al (2007) Nanoemulsions: formation, structure, and physical properties. J Phys: Condens Matter 19(7):079001
    21.Shinoda K et al (1981) Principles of attaining ultra-low interfacial tension: the role of hydrophile—lipophile-balance of surfactant at oil/water interface. Colloids Surf 2(4):301–314CrossRef
    22.Kunieda H, Friberg SE (1981) Critical phenomena in a surfactant/water/oil system. Basic study on the correlation between solubilization, microemulsion, and ultralow interfacial tensions. Bull Chem Soc Jpn 54(4):1010–1014CrossRef
    23.Kahlweit M et al (1987) How to study microemulsions. J Colloid Interface Sci 118(2):436–453CrossRef
    24.Davidov-Pardo G, McClements DJ (2015) Nutraceutical delivery systems: resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsification. Food Chem 167:205–212CrossRef
    25.Da Costa S, Basri M, Basri H (2014) Formation of stable palm kernel oil esters nanoemulsion system containing hydrocortisone. Asian J Chem 26(10):2883–2888
    26.Jaworska M, Sikora E, Ogonowski J (2014) The influence of glicerides oil phase on o/w nanoemulsion formation by pic method. Periodica Poilytechnica Chem Eng 58:43–48CrossRef
    27.Griffin WC (1949) Classification of surface active agents by "HLB". J Cosmet Sci 1:311–326
    28.Bancroft WD (1911) The theory of emulsification I. J Phys Chem 16(3):177–233CrossRef
    29.Bancroft WD (1911) The theory of emulsification II. J Phys Chem 16(5):345–372CrossRef
    30.Bancroft WD (1911) The theory of emulsification III. J Phys Chem 16(6):475–512CrossRef
    31.Bancroft WD (1911) The theory of emulsification IV. J Phys Chem 16(9):739–758CrossRef
    32.Bancroft WD (1912) The theory of emulsification V. J Phys Chem 17(6):501–519CrossRef
    33.Bancroft WD (1914) The theory of emulsification VI. J Phys Chem 19(4):275–309CrossRef
    34.Bancroft WD (1914) The theory of emulsification VII. J Phys Chem 19(6):513–529CrossRef
    35.Bancroft WD (1915) The theory of emulsification VIII. J Phys Chem 20(1):1–31CrossRef
    36.Aveyard R, Binks BP, Fletcher PDI (1990) Surfactant molecular geometry within planar and curved monolayers in relation to microemulsion phase behaviour. In: Bloor DM, Wyn-Jones E (eds) The Structure, Dynamics and Equilibrium Properties of Colloidal Systems. Springer, Netherlands, pp p. 557–p. 581CrossRef
    37.Bey K (1963) Die Analyse von Hautfetten aus getragener Wäsche I. Fette Seifen Anstrichmittel 65(8):611–618CrossRef
    38.Bey K (1964) Die Analyse von Hautfetten aus getragener Wäsche II. Fette, Seifen, Anstrichmittel 66(8):579–582CrossRef
    39.Schmiedel P., et al. (2014) Konzentrate / Concentrates, H.A.C. KGaA, Editor: Germany
    40.Solans C et al (2005) Nano-emulsions. Curr Opin Colloid Interface Sci 10(3-4):102–110CrossRef
    41.Tadros T et al (2004) Formation and stability of nano-emulsions. Adv Colloid Interface Sci 108:303–318CrossRef
    42.Provencher SW (1982) CONTIN: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput Phys Commun 27(3):229–242CrossRef
    43.Klemmer HFM (2013) Amphiphilic polymers in microemulsions: the influence on structure and formation kinetics. University of Cologne, Göttingen
    44.Foster T et al (2008) Small-angle neutron scattering from giant water-in-oil microemulsion droplets. I. J Chem Phys 128(5):054502CrossRef
    45.Roger K et al (2015) Emulsion ripening through molecular exchange at droplet contacts. Angew Chem Int Ed 54(5):1452–1455CrossRef
  • 作者单位:Anna Klemmer (1)
    Helge Klemmer (1)
    Reinhard Strey (1)
    Peter Schmiedel (2)

    1. Department of Chemistry, University of Cologne, Luxemburger Straße 116, 50939, Cologne, Germany
    2. International R&D/Technology, Laundry & Home Care, Henkel AG & Co. KGaA, Henkelstr. 67, 40191, Düsseldorf, Germany
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Polymer Sciences
    Physical Chemistry
    Soft Matter and Complex Fluids
    Characterization and Evaluation Materials
    Food Science
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1435-1536
文摘
Nanoemulsions were observed in simple dilution experiments, mimicking the flushing step in washing. The used low-energy method takes advantage of the ultra-low interfacial tension of the three-phase region of the underlying microemulsion systems similar to the well-known PIC method but boosted by a simultaneous temperature jump. Following the aging of the nanoemulsions with time-resolved dynamic light scattering, a slow radial growth of order 10-5 nm/s and, more interestingly, a monomodal and quite narrow distribution of the formed oil droplets was observed, which was also confirmed with SANS measurements. The most astonishing observation was, however, that the aging kinetics of the droplet radius is linear in time (i.e. r ~ talic ">t). This is in contrast to the typical aging mechanisms, Ostwald ripening or coagulation, where the volume is linear with time (i.e. r 3 ~ talic ">t). Preliminary ideas regarding this unexpected and unconventional mechanism are discussed.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.