Dynamics of an Optically Generated Electric Field in a Quantum Dot Molecule Device Using Time-Resolved Photoluminescence Measurements
详细信息    查看全文
  • 作者:Venkata R. Thota ; Thushan E. Wickramasinghe…
  • 关键词:Optical field modulation ; photovoltaic band ; flattening ; quantum dot molecules ; local electric field effects ; temporal dynamics ; nanoscale field sensor
  • 刊名:Journal of Electronic Materials
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:45
  • 期:4
  • 页码:2038-2044
  • 全文大小:3,644 KB
  • 参考文献:1.H. Drexler, D. Leonard, W. Hansen, J.P. Kotthaus, and P.M. Petroff, Phys. Rev. Lett. 73, 2252 (1994).CrossRef
    2.X. Li, Y. Wu, D. Steel, D. Gammon, T.H. Stievater, D.S. Katzer, D. Park, C. Piermarocchi, and L.J. Sham, Science 301, 809 (2003).CrossRef
    3.N. Sköld, A.B. de la Giroday, A.J. Bennett, I. Farrer, D.A. Ritchie, and A.J. Shields, Phys. Rev. Lett. 110, 029901 (2013).CrossRef
    4.D. Kim, S.G. Carter, A. Greilich, A.S. Bracker, and D. Gammon, Nat. Phys. 7, 223 (2011).CrossRef
    5.M. Creasey, J.H. Lee, Z. Wang, G. Salamo, and X. Li, Nano Lett. 12, 5169 (2012).CrossRef
    6.E.A. Stinaff, M. Scheibner, A.S. Bracker, I.V. Ponomarev, V.L. Korenev, M.E. Ware, M.F. Doty, T.L. Reinecke, and D. Gammon, Science 311, 636 (2006).CrossRef
    7.H.J. Krenner, M. Sabathil, E.C. Clark, A. Kress, D. Schuh, M. Bichler, G. Abstreiter, and J.J. Finley, Phys. Rev. Lett. 94, 057402 (2005).CrossRef
    8.P.W. Fry, I.E. Itskevich, D.J. Mowbray, M.S. Skolnick, J.J. Finley, J.A. Barker, E.P. O’Reilly, L.R. Wilson, I.A. Larkin, P.A. Maksym, M. Hopkinson, M. Al-Khafaji, J.P.R. David, A.G. Cullis, G. Hill, and J.C. Clark, Phys. Rev. Lett. 84, 733 (2000).CrossRef
    9.S. Ramanathan, G. Petersen, K. Wijesundara, R. Thota, E.A. Stinaff, M.L. Kerfoot, M. Scheibner, A.S. Bracker, and D. Gammon, Appl. Phys. Lett. 102, 21301 (2013).CrossRef
    10.M. Hecht, Phys. Rev. B 43, 12102(R) (1991).CrossRef
    11.W.P. Dumke, Phys. Rev. 132, 1998 (1963).CrossRef
    12.M. Garrido, K.C. Wijesundara, S. Ramanathan, E.A. Stinaff, A.S. Bracker, and D. Gammon, Appl. Phys. Lett. 96, 211115 (2010).CrossRef
    13.K. Wijesundara, M. Garrido, S. Ramanathan, E.A. Stinaff, A.S. Bracker, and D. Gammon, Mater. Res. Soc. Proc. 1208E, 1208-O05-02 (2010).
    14.N. Stranski and L. Von Krastanow, Akad. Wiss. Lit. Mainz Math.-Natur. Kl. IIb 146, 797 (1939).
    15.Z. Wasilewski, S. Fafard, and J. McCaffrey, J. Crys. Growth 201–202, 1131 (1999).CrossRef
    16.K.C. Wijesundara, J.E. Rolon, S.E. Ulloa, A.S. Bracker, D. Gammon, and E.A. Stinaff, Phys. Rev. B. 84, 081404 (2011).CrossRef
    17.J.E. Rolon, K.C. Wijesundara, S.E. Ulloa, A.S. Bracker, D. Gammon, and E.A. Stinaff, JOSA. B 29, A146 (2012).CrossRef
    18.M. Garrido, K. Wijesundara, S. Ramanathan, E.A. Stinaff, M. Scheibner, A.S. Bracker, and D. Gammon, Mater. Res. Soc. Proc. 1117E, 1117-J05-03.R1 (2009).
    19.J. Pozhela and A. Reklaitis, Solid State Electron. 23, 927 (1980).CrossRef
  • 作者单位:Venkata R. Thota (1) (2)
    Thushan E. Wickramasinghe (1)
    Kushal Wijesundara (1)
    Eric A. Stinaff (1)
    Allan S. Bracker (3)
    D. Gammon (3)

    1. Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH, 45701, USA
    2. Intel Corporation, Hillsboro, OR, USA
    3. Naval Research Labs, Washington, DC, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Optical and Electronic Materials
    Characterization and Evaluation Materials
    Electronics, Microelectronics and Instrumentation
    Solid State Physics and Spectroscopy
  • 出版者:Springer Boston
  • ISSN:1543-186X
文摘
Interdot transitions in the emission spectra of a quantum dot molecule may be used as a sensitive nanoscale probe to measure electric fields. Here, we demonstrate this potential by monitoring the temporal behavior of photovoltaic band flattening in a Schottky diode structure using a two-color excitation scheme. First, a continuous wave laser is tuned to an excitation energy below the wetting layer (WL) emission energy to create the interdot transition that is used to monitor the electric field in the device. A second modulated laser, at higher energy, is then used to create the optically generated electric field (OGEF) which leads to the photovoltaic band flattening. It is found that the rise time of this OGEF is ∼2.85 μs and the decay, or fall time, is on the order of ∼110 μs, most likely determined by device-dependent carrier transport, trapping, and tunneling rates. We also find that, at higher applied fields, the OGEF tends to decay faster and the measured values are consistent with the photovoltaic band-flattening effects reported previously in nanostructure devices.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.