Renormalization and Asymptotic Expansion of Dirac’s Polarized Vacuum
详细信息    查看全文
  • 作者:1. Centre de Mathématiques Laurent Schwartz (UMR 7640) ; école Polytechnique ; 91128 Palaiseau Cedex ; France2. CNRS & Laboratoire de Mathématiques (UMR 8088) ; Université de Cergy-Pontoise ; 95000 Cergy-Pontoise ; France3. Ceremade (UMR 7534) ; Université Paris-Dauphine ; Place du Maréchal de Lattre de Tassigny ; 75775 Paris Cedex 16 ; France
  • 刊名:Communications in Mathematical Physics
  • 出版年:2011
  • 出版时间:August 2011
  • 年:2011
  • 卷:306
  • 期:1
  • 页码:1-33
  • 全文大小:462.4 KB
  • 参考文献:1. Avron J., Seiler R., Simon B.: The index of a pair of projections. J. Funct. Anal. 120, 220–237 (1994)
    2. Bjorken J.D., Drell S.D.: Relativistic quantum fields. McGraw-Hill Book Co., New York (1965)
    3. Cancès é., Lewin M.: The dielectric permittivity of crystals in the reduced Hartree-Fock approximation. Arch. Rati. Mech. Anal. 197, 139–177 (2010)
    4. Chaix P., Iracane D.: From quantum electrodynamics to mean field theory: I. The Bogoliubov-Dirac-Fock formalism. J. Phys. B 22, 3791–3814 (1989)
    5. Dirac P.A.: The quantum theory of the electron. II. Proc. Royal Soc. London (A) 118, 351–361 (1928)
    6. Dirac P.A.: A theory of electrons and protons. Proc. Royal Soc. London (A) 126, 360–365 (1930)
    7. Dirac, P.A.: Theory of electrons and positrons. Nobel Lecture delivered at Stockholm, 1933
    8. Dirac P.A.: Théorie du positron. Solvay report XXV, 203–212 (1934)
    9. Dyson F.J.: The S matrix in quantum electrodynamics. Phys. Rev. 75(2), 1736–1755 (1949)
    10. Dyson F.J.: Divergence of Perturbation Theory in Quantum Electrodynamics. Phys. Rev. 85, 631–632 (1952)
    11. Engel, E.: Relativistic Density Functional Theory: Foundations and Basic Formalism. Vol. ‘Relativistic Electronic Structure Theory, Part 1. Fundamentals’, Schwerdtfeger ed., Amsterdam: Elsevier, 2002, ch. 10, pp. 524–624
    12. Engel E., Dreizler R.M.: Field-theoretical approach to a relativistic Thomas-Fermi-Dirac-Weizs?cker model. Phys. Rev. A 35, 3607–3618 (1987)
    13. Gravejat P., Lewin M., Séré é.: Ground state and charge renormalization in a nonlinear model of relativistic atoms. Commun. Math. Phys. 286, 179–215 (2009)
    14. Greiner, W., Müller, B., Rafelski, J.: Quantum Electrodynamics of Strong Fields. First ed., Texts and Monographs in Physics. Berlin-Heidelberg-NewYork: Springer-Verlag, 1985
    15. Hainzl C., Lewin M., Séré é.: Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation. Commun. Math. Phys. 257, 515–562 (2005)
    16. Hainzl C., Lewin M., Séré é.: Self-consistent solution for the polarized vacuum in a no-photon QED model. J. Phys. A 38, 4483–4499 (2005)
    17. Hainzl C., Lewin M., Séré é.: Existence of atoms and molecules in the mean-field approximation of no-photon quantum electrodynamics. Arch. Rati. Mech. Anal. 192, 453–499 (2009)
    18. Hainzl C., Lewin M., Séré é., Solovej J.P.: A minimization method for relativistic electrons in a mean-field approximation of quantum electrodynamics. Phys. Rev. A 76, 052104 (2007)
    19. Hainzl C., Lewin M., Solovej J.P.: The mean-field approximation in quantum electrodynamics: the no-photon case. Comm. Pure Appl. Math. 60, 546–596 (2007)
    20. Hainzl C., Siedentop H.: Non-perturbative mass and charge renormalization in relativistic no-photon quantum electrodynamics. Commun. Math. Phys. 243, 241–260 (2003)
    21. Itzykson C., Zuber J.B.: Quantum field theory. McGraw-Hill International Book Co., New York (1980)
    22. Landau L., Pomeran?uk I.: On point interaction in quantum electrodynamics. Dokl. Akad. Nauk SSSR (N.S.) 102, 489–492 (1955)
    23. Landau, L.D.: On the quantum theory of fields. In: Niels Bohr and the development of physics, New York: McGraw-Hill Book Co., 1955, pp. 52–69
    24. Lieb E.H., Siedentop H.: Renormalization of the regularized relativistic electron-positron field. Commun. Math. Phys. 213, 673–683 (2000)
    25. Pauli W., Rose M.: Remarks on the polarization effects in the positron theory. Phys. Rev. II 49, 462–465 (1936)
    26. Reinhard P.-G., Greiner W., Arenh?vel H.: Electrons in strong external fields. Nucl. Phys. A 166, 173–197 (1971)
    27. Seiler E., Simon B.: Bounds in the Yukawa 2 quantum field theory: upper bound on the pressure. Hamiltonian bound and linear lower bound. Commun. Math. Phys. 45, 99–114 (1975)
    28. Serber R.: Linear modifications in the Maxwell field equations. Phys. Rev. 48(2), 49–54 (1935)
    29. Shale D., Stinespring W.F.: Spinor representations of infinite orthogonal groups. J. Math. Mech. 14, 315–322 (1965)
    30. Simon, B.: Trace ideals and their applications. Vol. 35 of London Mathematical Society Lecture Note Series, Cambridge: Cambridge University Press, 1979
    31. Solovej J.P.: Proof of the ionization conjecture in a reduced Hartree-Fock model. Invent. Math. 104, 291–311 (1991)
    32. Thaller, B. The Dirac equation. Texts and Monographs in Physics. Berlin: Springer-Verlag, 1992
    33. Uehling E.: Polarization effects in the positron theory. Phys. Rev. 48(2), 55–63 (1935)
  • 作者单位:http://www.springerlink.com/content/6771k21157558165/
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mathematical and Computational Physics
    Quantum Physics
    Quantum Computing, Information and Physics
    Complexity
    Statistical Physics
    Relativity and Cosmology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0916
文摘
We perform rigorously the charge renormalization of the so-called reduced Bogoliubov-Dirac-Fock (rBDF) model. This nonlinear theory, based on the Dirac operator, describes atoms and molecules while taking into account vacuum polarization effects. We consider the total physical density ρ ph including both the external density of a nucleus and the self-consistent polarization of the Dirac sea, but no ‘real’ electron. We show that ρ ph admits an asymptotic expansion to any order in powers of the physical coupling constant α ph, provided that the ultraviolet cut-off behaves as L ~ e3p(1-Z3)/2aph >> 1{\Lambda\sim e^{3\pi(1-Z_3)/2\alpha_{\rm ph}} \gg 1}. The renormalization parameter 0 < Z 3 < 1 is defined by Z 3 = α ph/α, where α is the bare coupling constant. The coefficients of the expansion of ρ ph are independent of Z 3, as expected. The first order term gives rise to the well-known Uehling potential, whereas the higher order terms satisfy an explicit recursion relation.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.