On the almost periodic homogenization of non-linear scalar conservation laws
详细信息    查看全文
  • 作者:Jean Silva
  • 关键词:Primary 35B40 ; 35B35 ; Secondary 35L65 ; 35K55
  • 刊名:Calculus of Variations and Partial Differential Equations
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:54
  • 期:4
  • 页码:3623-3641
  • 全文大小:534 KB
  • 参考文献:1.Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482鈥?518 (1992)MATH MathSciNet CrossRef
    2.Ambrosio, L., Frid, H.: Multiscale Young measures in almost periodic homogenization and applications. Arch. Ration. Mech. Anal. 192, 37鈥?5 (2009)MATH MathSciNet CrossRef
    3.Ambrosio, L., Frid, H., Silva, J.C.: Multiscale Young measures in homogenization of continuous stationary processes in compact spaces and applications. J. Funct. Anal. 256, 1962鈥?997 (2009)MATH MathSciNet CrossRef
    4.Besicovitch, A.S.: Almost Periodic Functions. Cambridge University Press (1932)
    5.Bourgeat, A., Mikelic, A., Wright, S.: Stochastic two-scale convergence in the mean and applications. J. Reine Angew. Math. 456, 19鈥?1 (1994)
    6.Caffarelli, L., Souganidis, P.E., Wang, C.: Homogenization of nonlinear, uniformly elliptic and parabolic partial differential equations in stationary ergodic media. Commun. Pure Appl. Math. 58(3), 319鈥?61 (2005)MATH MathSciNet CrossRef
    7.Casado-Diaz, J., Gayte, I.: The two-scale convergence method applied to generalized Besicovitch spaces. Proc. R. Soc. Lond. A 458, 2925鈥?946 (2002)MATH MathSciNet CrossRef
    8.Dalibard, A.-L.: Homogenization of non-linear scalar conservation laws. Arch. Ration. Mech. Anal. 192, 117鈥?64 (2009)MATH MathSciNet CrossRef
    9.Dafermos, C.M.: Hyperbolic conservation laws in continuum physics. In: Chenciner, A., Coates, J., Varadhan, S.R.S. (eds.) Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 325, 3rd edn. Springer, Berlin (2010)
    10.Dal Maso, G., Modica, L.: Nonlinear stochastic homogenization. Ann. Mat. Pura ed Appl. 144(1), 347鈥?89 (1986)MATH MathSciNet CrossRef
    11.Dunford, N., Schwartz, J.T.: Linear Operators. Parts I and II. Interscience Publishers Inc., New York (1958)
    12.DiPerna, R.J.: Convergence of approximate solutions to conservation laws. Arch. Ration. Mech. Anal. 82, 27鈥?0 (1983)MATH MathSciNet CrossRef
    13.DiPerna, R.J.: Convergence of the viscosity method for isentropic gas dynamics. Commun. Math. Phys. 91, 1鈥?0 (1983)MATH MathSciNet CrossRef
    14.DiPerna, R.J.: Measure-valued solutions to conservation laws. Arch. Ration. Mech. Anal. 88, 223鈥?70 (1985)MATH MathSciNet CrossRef
    15.Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)MATH
    16.Eberlein, W.F.: Abstract ergodic theorems and weak almost periodic functions. Trans. Am. Soc. 67, 217鈥?40 (1949)MATH MathSciNet CrossRef
    17.Eberlein, W.F.: The point spectrum of weakly almost periodic functions. Mich. Math. J. 3, 137-139 (1955鈥?956)
    18.Frid, H., Silva, J.: Homogenization of nonlinear PDE鈥檚 in the Fourier鈥揝tieltjes algebras. SIAM J. Math. Anal. 41, 1589-1620 (2009)
    19.Frid, H., Silva, J.: Homogenization of nonlinear partial differential equations in the context of ergodic algebras: recents results and open problems. In: Bressan, A., Chen, G.-Q.G., Lewicka, M., Wang, D. (eds.) Nonlinear Conservation Laws and Applications. IMA Math. Appl., vol. 153, pp. 279鈥?91. Springer, New York (2011)
    20.Frid, H., Silva, J.: Homogenization of degenerate porous medium type equations in ergodic algebras. Adv. Math. 246, 303鈥?50 (2013)
    21.Ishii, H.: Almost periodic homogenization of Hamilton鈥揓acobi equations. In: International Conference on Differential Equations (Berlin, 1999), vols. 1, 2, pp. 600鈥?05. World Sci Publishing, River Edge (2000)
    22.Jabin, P.-E., Tzavaras, A.E.: Kinetic decomposition for periodic homogenization problems. SIAM J. Math. Anal. 41, 360鈥?90 (2009)
    23.Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994)CrossRef
    24.Kruzhkov, S.N.: First order quasilinear equations in several independent variables. Math. USSR-Sb. 10, 217鈥?43 (1970)MATH CrossRef
    25.Lions, P.-L., Souganidis, P.E.: Correctors for the homogenization of the Hamilton鈥揓acobi equations in the stationary ergodic setting. Commun. Pure Appl. Math. 56, 1501鈥?524 (2003)MATH MathSciNet CrossRef
    26.Levitan, B.M., Zhikov, V.V.: Almost Periodic Functions and Differential Equations. Cambidge University Press, New York (1982)MATH
    27.Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20(3), 608鈥?23 (1989)MATH MathSciNet CrossRef
    28.Nguetseng, G.: Homogenization structures and application. II. Z. Anal. Anwend. 23(3), 483鈥?08 (2004)MATH MathSciNet CrossRef
    29.Reed, M., Simon, B.: Methods of Modern Mathematical Physics I: Functional Analysis. Academic Press, New York (1972)MATH
    30.Rudin, W.: Weak almost periodic functions and Fourier鈥揝tieltjes transforms. Duke Math. J. 26, 215鈥?20 (1959)MATH MathSciNet CrossRef
    31.Serre, D.: Systems of Conservations Laws. 2. Cambridge University Press, Cambridge (2000). (Geometric Structures, Oscillations and Initial-Boundary Value Problems. Translated from the 1996 French Original by I.N. Sneddon)
    32.Souganidis, P.E.: Stochastic homogenization of Hamilton鈥揓acobi equations and some application. Asymptot. Anal. 20, 141鈥?78 (1999)MathSciNet
    33.Weinan, E.: Homogenization of linear and nonlinear transport equations. Commun. Pure Appl. Math. 45, 301-326 (1992)
    34.Young, L.C.: Lectures on Calculus of Variations and Optimal Control Theory. Saunders, USA (1969)
    35.Zhikov, V.V., Krivenko, E.V.: Homogenization of singularly perturbed elliptic operators. Matem. Zametki 33, 571鈥?82 (1983). [English transl. Math. Notes 33, 294鈥?00 (1983)]
  • 作者单位:Jean Silva (1)

    1. Instituto de Matem谩tica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Analysis
    Systems Theory and Control
    Calculus of Variations and Optimal Control
    Mathematical and Computational Physics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0835
文摘
The paper deals with the homogenization problem of non-linear scalar conservations laws \(\partial _t u_\varepsilon + \nabla _x\cdot (a(\frac{x}{\varepsilon })f(u_\varepsilon ))=0\). The vector field a is assumed to be incompressible and its components are assumed to be almost periodic. We prove that the weak limit of the family \(\{u_{\varepsilon }{\}}_{\varepsilon >0}\) is the mean value of a function, which we call U(z, x, t), that is the entropy solution of a similar conservation law in the macroscopic variables, but with coefficients depending on the microscopic variables and has the property that the function \(z\mapsto \int _{\mathbb {R}_+^{n+1}}U(z,x,t)\varphi (x,t)\,dx\,dt\) is also almost periodic for any \(\varphi \in C_c(\mathbb {R}_+^{n+1})\). Mathematics Subject Classification Primary 35B40 35B35 Secondary 35L65 35K55
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.