Are temporal patterns of sitting associated with obesity among blue-collar workers? A cross sectional study using accelerometers
详细信息    查看全文
  • 作者:Nidhi Gupta ; David M. Hallman ; Svend Erik Mathiassen ; Mette Aadahl…
  • 关键词:Brief sitting bouts ; prolonged sitting bouts ; Total sitting time ; Sedentary behavior ; Prolong sitting ; Interrupted sitting ; Working day ; Physical activity
  • 刊名:BMC Public Health
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:16
  • 期:1
  • 全文大小:880 KB
  • 参考文献:1.Data and statistics: The challenge of obesity - quick statistics [http://​www.​euro.​who.​int/​en/​health-topics/​noncommunicable-diseases/​obesity/​data-and-statistics ]
    2.Neovius K, Johansson K, Kark M, Tynelius P, Rasmussen F. Trends in self-reported BMI and prevalence of obesity 2002-10 in Stockholm County, Sweden. Eur J Public Health. 2013;23(2):312–5.CrossRef PubMed
    3.Gu JK, Charles LE, Bang KM, Ma CC, Andrew ME, Violanti JM, et al. Prevalence of obesity by occupation among US workers: the National Health Interview Survey 2004-2011. J Occup Environ Med. 2014;56(5):516–28.PubMedCentral CrossRef PubMed
    4.Flegal KM, Kit BK, Orpana H, Graubard BI. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA. 2013;309(1):71–82.CrossRef PubMed
    5.Poulsen K, Cleal B, Clausen T, Andersen LL. Work, diabetes and obesity: a seven year follow-up study among Danish health care workers. PLoS One. 2014;9(7):e103425.PubMedCentral CrossRef PubMed
    6.Pi-Sunyer FX. Medical hazards of obesity. Ann Intern Med. 1993;119(7 Pt 2):655–60.CrossRef PubMed
    7.Owen N, Sparling PB, Healy GN, Dunstan DW, Matthews CE. Sedentary behavior: emerging evidence for a new health risk. Mayo Clin Proc. 2010;85(12):1138–41.PubMedCentral CrossRef PubMed
    8.Bennie JA, Chau JY, van der Ploeg HP, Stamatakis E, Do A, Bauman A. The prevalence and correlates of sitting in European adults - a comparison of 32 Eurobarometer-participating countries. Int J Behav Nutr Phys Act. 2013;10:107.PubMedCentral CrossRef PubMed
    9.Gupta N, Stordal CC, Hallman D, Korshøj M, Gomes CI, Holtermann A. Is objectively measured sitting time associated with low back pain? A cross-sectional investigation in the NOMAD study. PLoS One. 2015;10(3):e0121159.PubMedCentral CrossRef PubMed
    10.Hallman DM, Gupta N, Mathiassen SE, Holtermann A. Association between objectively measured sitting time and neck–shoulder pain among blue-collar workers. Int Arch Occup Environ Health. 2015;88(8):1031–42.CrossRef PubMed
    11.Vandelanotte C, Duncan MJ, Short C, Rockloff M, Ronan K, Happell B, et al. Associations between occupational indicators and total, work-based and leisure-time sitting: a cross-sectional study. BMC Public Health. 2013;13:1110.PubMedCentral CrossRef PubMed
    12.Hirokawa K, Tsutsumi A, Kayaba K, Jichi Medical Cohort study g. Mortality risks in relation to occupational category and position among the Japanese working population: the Jichi Medical School (JMS) cohort study. BMJ Open. 2013;3(8):e002690.PubMedCentral CrossRef PubMed
    13.Ernstsen L, Bjerkeset O, Krokstad S. Educational inequalities in ischaemic heart disease mortality in 44,000 Norwegian women and men: the influence of psychosocial and behavioural factors. The HUNT Study. Scand J Public Health. 2010;38(7):678–85.CrossRef PubMed
    14.Jakes RW, Day NE, Khaw KT, Luben R, Oakes S, Welch A, et al. Television viewing and low participation in vigorous recreation are independently associated with obesity and markers of cardiovascular disease risk: EPIC-Norfolk population-based study. Eur J Clin Nutr. 2003;57(9):1089–96.CrossRef PubMed
    15.Stamatakis E, Hirani V, Rennie K. Moderate-to-vigorous physical activity and sedentary behaviours in relation to body mass index-defined and waist circumference-defined obesity. Br J Nutr. 2009;101(5):765–73.CrossRef PubMed
    16.Katzmarzyk PT, Church TS, Craig CL, Bouchard C. Sitting time and mortality from all causes, cardiovascular disease, and cancer. Med Sci Sports Exerc. 2009;41(5):998–1005.CrossRef PubMed
    17.Honda T, Chen S, Kishimoto H, Narazaki K, Kumagai S. Identifying associations between sedentary time and cardio-metabolic risk factors in working adults using objective and subjective measures: a cross-sectional analysis. BMC Public Health. 2014;14:1307.PubMedCentral CrossRef PubMed
    18.Healy GN, Dunstan DW, Salmon J, Cerin E, Shaw JE, Zimmet PZ, et al. Breaks in Sedentary Time: Beneficial associations with metabolic risk. Diabetes Care. 2008;31(4):661–6.CrossRef PubMed
    19.Healy GN, Matthews CE, Dunstan DW, Winkler EA, Owen N. Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003-06. Eur Heart J. 2011;32(5):590–7.PubMedCentral CrossRef PubMed
    20.Saunders TJ, Tremblay MS, Mathieu ME, Henderson M, O’Loughlin J, Tremblay A, et al. Associations of sedentary behavior, sedentary bouts and breaks in sedentary time with cardiometabolic risk in children with a family history of obesity. PLoS One. 2013;8(11):e79143.PubMedCentral CrossRef PubMed
    21.Healy GN, Winkler EA, Brakenridge CL, Reeves MM, Eakin EG. Accelerometer-derived sedentary and physical activity time in overweight/obese adults with type 2 diabetes: cross-sectional associations with cardiometabolic biomarkers. PLoS One. 2015;10(3):e0119140.PubMedCentral CrossRef PubMed
    22.Colley RC, Garriguet D, Janssen I, Wong SL, Saunders TJ, Carson V, et al. The association between accelerometer-measured patterns of sedentary time and health risk in children and youth: results from the Canadian Health Measures Survey. BMC Public Health. 2013;13:200.PubMedCentral CrossRef PubMed
    23.Bankoski A, Harris TB, McClain JJ, Brychta RJ, Caserotti P, Chen KY, et al. Sedentary activity associated with metabolic syndrome independent of physical activity. Diabetes Care. 2011;34(2):497–503.PubMedCentral CrossRef PubMed
    24.Atkin AJ, Gorely T, Clemes SA, Yates T, Edwardson C, Brage S, et al. Methods of measurement in epidemiology: Sedentary behaviour. Int J Epidemiol. 2012;41(5):1460–71.PubMedCentral CrossRef PubMed
    25.Henson J, Yates T, Biddle SJ, Edwardson CL, Khunti K, Wilmot EG, et al. Associations of objectively measured sedentary behaviour and physical activity with markers of cardiometabolic health. Diabetologia. 2013;56(5):1012–20.CrossRef PubMed
    26.Saidj M, Jorgensen T, Jacobsen RK, Linneberg A, Aadahl M. Differential cross-sectional associations of work- and leisure-time sitting, with cardiorespiratory and muscular fitness among working adults. Scand J Work Environ Health. 2014;40(5):531–8.CrossRef PubMed
    27.Hallman DM, Mathiassen SE, Gupta N, Korshoj M, Holtermann A. Differences between work and leisure in temporal patterns of objectively measured physical activity among blue-collar workers. BMC Public Health. 2015;15(1):976.PubMedCentral CrossRef PubMed
    28.Gupta N, Jensen BS, Sogaard K, Carneiro IG, Christiansen CS, Hanisch C, et al. Face validity of the single work ability item: comparison with objectively measured heart rate reserve over several days. Int J Env Res Public Health. 2014;11(5):5333–48.CrossRef
    29.Skotte J, Korshoj M, Kristiansen J, Hanisch C, Holtermann A. Detection of physical activity types using triaxial accelerometers. J Phys Act Health. 2014;11(1):76–84.CrossRef PubMed
    30.Ingebrigtsen J, Stemland I, Christiansen C, Jorgen S, Hanisch C, Krustrup P, et al. Validation of a commercial and custom made accelerometer-based software for step count and frequency during walking and running. J Ergon. 2013;3:119.
    31.Tudor-Locke C, Johnson WD, Katzmarzyk PT. Accelerometer-determined steps per day in US adults. Med Sci Sports Exerc. 2009;41(7):1384–91.CrossRef PubMed
    32.Schuna Jr JM, Johnson WD, Tudor-Locke C. Adult self-reported and objectively monitored physical activity and sedentary behavior: NHANES 2005-2006. Int J Behav Nutr Phys Act. 2013;10:126.PubMedCentral CrossRef PubMed
    33.Hesketh KR, McMinn AM, Ekelund U, Sharp SJ, Collings PJ, Harvey NC, et al. Objectively measured physical activity in four-year-old British children: a cross-sectional analysis of activity patterns segmented across the day. Int J Behav Nutr Phys Act. 2014;11:1.PubMedCentral CrossRef PubMed
    34.Matthews CE, Chen KY, Freedson PS, Buchowski MS, Beech BM, Pate RR, et al. Amount of time spent in sedentary behaviors in the United States, 2003-2004. Am J Epidemiol. 2008;167(7):875–81.PubMedCentral CrossRef PubMed
    35.Mathiassen SE, Winkel J. Quantifying variation in physical load using exposure-vs-time data. Ergonomics. 1991;34(12):1455–68.CrossRef PubMed
    36.Straker L, Campbell A, Mathiassen SE, Abbott RA, Parry S, Davey P. Capturing the Pattern of Physical Activity and Sedentary Behavior: Exposure Variation Analysis of Accelerometer Data. J Phys Act Health. 2014;11(3):614–25.CrossRef PubMed
    37.Kruger J, Ham SA, Prohaska TR. Behavioral risk factors associated with overweight and obesity among older adults: the 2005 National Health Interview Survey. Prev Chronic Dis. 2009;6(1):A14.PubMedCentral PubMed
    38.O’brien R. A Caution Regarding Rules of Thumb for Variance Inflation Factors. Qual Quant. 2007;41(5):673–90.CrossRef
    39.Hamilton MT, Hamilton DG, Zderic TW. Exercise physiology versus inactivity physiology: an essential concept for understanding lipoprotein lipase regulation. Exerc Sport Sci Rev. 2004;32(4):161–6.PubMedCentral CrossRef PubMed
    40.Bey L, Hamilton MT. Suppression of skeletal muscle lipoprotein lipase activity during physical inactivity: a molecular reason to maintain daily low-intensity activity. J Physiol (Lond). 2003;551(Pt 2):673–82.CrossRef
    41.Peddie MC, Bone JL, Rehrer NJ, Skeaff CM, Gray AR, Perry TL. Breaking prolonged sitting reduces postprandial glycemia in healthy, normal-weight adults: a randomized crossover trial. Am J Clin Nutr. 2013;98(2):358–66.CrossRef PubMed
    42.Latouche C, Jowett JBM, Carey AL, Bertovic DA, Owen N, Dunstan DW, et al. Effects of breaking up prolonged sitting on skeletal muscle gene expression, vol. 114. 2013.
    43.Van Dyck D, Cerin E, De Bourdeaudhuij I, Hinckson E, Reis RS, Davey R, et al. International study of objectively measured physical activity and sedentary time with body mass index and obesity: IPEN adult study. Int J Obesity. 2015;39(2):199–207.CrossRef
    44.Ekelund U, Brage S, Besson H, Sharp S, Wareham NJ. Time spent being sedentary and weight gain in healthy adults: reverse or bidirectional causality? Am J Clin Nutr. 2008;88(3):612–7.PubMed
    45.Chaput JP, Leduc G, Boyer C, Belanger P, LeBlanc AG, Borghese MM, et al. Objectively measured physical activity, sedentary time and sleep duration: independent and combined associations with adiposity in canadian children. Nutr Diabetes. 2014;4:e117.PubMedCentral CrossRef PubMed
    46.Shen W, Punyanitya M, Chen J, Gallagher D, Albu J, Pi-Sunyer X, et al. Waist circumference correlates with metabolic syndrome indicators better than percentage fat. Obesity (Silver Spring). 2006;14(4):727–36.CrossRef
    47.Hooftman WE, van der Beek AJ, van de Wal BG, Knol DL, Bongers PM, Burdof A, et al. Equal task, equal exposure? Are men and women with the same tasks equally exposed to awkward working postures? Ergonomics. 2009;52(9):1079–86.CrossRef PubMed
  • 作者单位:Nidhi Gupta (1)
    David M. Hallman (2)
    Svend Erik Mathiassen (2)
    Mette Aadahl (3) (4)
    Marie Birk Jørgensen (1)
    Andreas Holtermann (1) (5)

    1. National Research Centre for the Working Environment, Copenhagen, Lerso Parkalle 105, 2100, Copenhagen, Denmark
    2. Centre for Musculoskeletal Research, Department of Occupational and Public Health Sciences, University of Gävle, SE-80176, Gävle, Sweden
    3. Research Centre for Prevention and Health, The Capital Region of Denmark, Glostrup Hospital, 2600, Glostrup, Denmark
    4. Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, 1014, Copenhagen, Denmark
    5. Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, 5230, Odense, Denmark
  • 刊物主题:Public Health; Medicine/Public Health, general; Epidemiology; Environmental Health; Biostatistics; Vaccine;
  • 出版者:BioMed Central
  • ISSN:1471-2458
文摘
Background Little is known about associations of temporal patterns of sitting (i.e., distribution of sitting across time) with obesity. We aimed investigating the association between temporal patterns of sitting (long, moderate and brief uninterrupted bouts) and obesity indicators (body mass index (BMI), waist circumference and fat percentage), independently from moderate-vigorous physical activity (MVPA) and total sitting time among blue-collar workers.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.