A modified direct adaptive robust motion trajectory tracking controller of a pneumatic system
详细信息    查看全文
  • 作者:Peng-fei Qian ; Guo-liang Tao ; De-yuan Meng…
  • 关键词:On/off solenoid valve ; Tracking control ; Robust control ; Adaptive control ; Kalman filter ; Discontinuous projection ; TH138 ; TP273
  • 刊名:Frontiers of Information Technology & Electronic Engineering
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:15
  • 期:10
  • 页码:878-891
  • 全文大小:1,054 KB
  • 参考文献:Ahn, K., Yokota, S., 2005. Intelligent switching control of pneumatic actuator using on/off solenoid valves. Mechatronics, 15(6):683-02. [doi:10.1016/j.mechatronics.2005.01.001]CrossRef
    Aziz, S., Bone, G.M., 1998. Automatic tuning of an accurate position controller for pneumatic actuators. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.1782-788. [doi:10.1109/IROS.1998.724855]
    Barth, E.J., Goldfarb, M., 2002. A control design method for switching systems with application to pneumatic servo systems. ASME Int. Mechanical Engineering Congress and Exposition, p.463-69. [doi:10.1115/IMECE2002-33424]
    Barth, E.J., Zhang, J., Goldfarb, M., 2002. Sliding mode approach to PWM-controlled pneumatic systems. Proc. American Control Conf., 3:2362-367. [doi:10.1109/ACC.2002.1023995]
    Brun, X., Belgharbi, M., Sesmat, S., et al., 1999. Control of an electropneumatic actuator: comparison between some linear and non-linear control laws. Proc. Inst. Mech. Eng. Part I: J. Syst. Contr. Eng., 213(5):387-06. [doi:10.1243/0959651991540232]
    Carneiro, J.F., de Almeida, F.G., 2012. A high-accuracy trajectory following controller for pneumatic devices. Int. J. Adv. Manuf. Technol., 61(1-):253-67. [doi:10.1007/s00170-011-3695-6]CrossRef
    Chen, H.M., Chen, Z.Y., Chung, M.C., 2009. Implementation of an integral sliding mode controller for a pneumatic cylinder position servo control system. 4th Int. Conf. on Innovative Computing, Information and Control, p.552-55. [doi:10.1109/ICICIC.2009.240]
    Girin, A., Plestan, F., Brun, X., et al., 2009. High-order sliding-mode controllers of an electropneumatic actuator: application to an aeronautic benchmark. IEEE Trans. Contr. Syst. Technol., 17(3):633-45. [doi:10.1109/TCST.2008.2002950]CrossRef
    Hodgson, S., Le, M.Q., Tavakoli, M., et al., 2012. Improved tracking and switching performance of an electropneumatic positioning system. Mechatronics, 22(1):1-2. [doi:10.1016/j.mechatronics.2011.10.007]CrossRef
    Lee, H.K., Choi, G.S., Choi, G.H., 2002. A study on tracking position control pneumatic actuators. Mechatronics, 12(6):813-31. [doi:10.1016/S0957-4158(01)00024-1]CrossRef
    Meng, D.Y., Tao, G.L., Ban, W., et al., 2013a. Adaptive robust output force tracking control of pneumatic cylinder while maximizing/minimizing its stiffness. J. Cent. South Univ., 20(6):1510-518. [doi:10.1007/s11771-013-1642-4]CrossRef
    Meng, D.Y., Tao, G.L., Zhu, X.C., 2013b. Integrated direct/indirect adaptive robust motion trajectory tracking control of pneumatic cylinders. Int. J. Contr., 86(9):1620-633. [doi:10.1080/00207179.2013.792002]MathSciNet CrossRef MATH
    Nguyen, T., Leavitt, J., Jabbari, F., 2007. Accurate sliding-mode control of pneumatic systems using low-cost solenoid valves. IEEE/ASME Trans. Mechatron., 12(2):216-19. [doi:10.1109/TMECH.2007.892821]CrossRef
    Ning, S., Bone, G.M., 2005. Experimental comparison of two pneumatic servo position control algorithms. Proc. IEEE Int. Conf. on Mechatronics and Automation, p.37-2. [doi:10.1109/ICMA.2005.1626519]
    Qian, P.F., Tao, G.L., Chen, J.F., 2012. Modeling and simulation of stick-slip motion for pneumatic cylinder based on meter-in circuit. Appl. Mech. Mater., 130-134:775-80. [doi:10.4028/www.scientific.net/AMM.130-134.775]CrossRef
    Qian, P.F., Tao, G.L., Meng, D.Y., et al., 2014. Nonlinear model-based position servo control of electro-pneumatic clutch actuator. Trans. Chin. Soc. Agric. Mach., 45(3):1- (in Chinese). [doi:10.6041/j.issn.1000-1298.2014.03.001]
    Rao, Z., Bone, G.M., 2008. Nonlinear modeling and control of servo pneumatic actuators. IEEE Trans. Contr. Syst. Technol., 16(3):562-69. [doi:10.1109/TCST.2007.912127]CrossRef
    Richard, E., Scavarda, S., 1996. Comparison between linear and nonlinear control of an electropneumatic servodrive. J. Dynam. Syst. Meas. Contr., 118(2):245-52. [doi:10.1115/1.2802310]CrossRef MATH
    Richardson, R., Plummer, A.R., Brown, M.D., 2001. Self-tuning control of a low-friction pneumatic actuator under the influence of gravity. IEEE Trans. Contr. Syst. Technol., 9(2):330-34. [doi:10.1109/87.911384]CrossRef
    Schulte, H., Hahn, H., 2004. Fuzzy state feedback gain scheduling control of servo-pneumatic actuators. Contr. Eng. Pract., 12(5):639-50. [doi:10.1016/S0967-0661(03)00148-5]CrossRef
    Shen, X., Zhang, J., Barth, E.J., et al., 2006. Nonlinear model-based control of pulse width modulated pneumatic positioning system. J. Dynam. Syst. Meas. Contr., 128(3): 663-69. [doi:10.1115/1.2232689]CrossRef
    Situm, Z., Pavkovic, D., Novakovic, B., 2004. Servo pneumatic position control using fuzzy PID gain scheduling. J. Dynam. Syst. Meas. Contr., 126(2):376-87. [doi:10.1115/1.1767857]CrossRef
    Smaoui, M., Brun, X., Thomasset, D., 2006. A study on tracking position control of an electropneumatic system using backstepping design. Contr. Eng. Pract., 14(8):923-33. [doi:10.1016/j.conengprac.2005.05.003]CrossRef
    Tsai, Y.C., Huang, A.C., 2008. Mul
  • 作者单位:Peng-fei Qian (1)
    Guo-liang Tao (1)
    De-yuan Meng (2)
    Hao Liu (1)

    1. The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou, 310027, China
    2. School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, 221116, China
  • 刊物类别:Computer Science, general; Electrical Engineering; Computer Hardware; Computer Systems Organization
  • 刊物主题:Computer Science, general; Electrical Engineering; Computer Hardware; Computer Systems Organization and Communication Networks; Electronics and Microelectronics, Instrumentation; Communications Engine
  • 出版者:Zhejiang University Press
  • ISSN:2095-9230
文摘
In this study, we developed and tested a high-precision motion trajectory tracking controller of a pneumatic cylinder driven by four costless on/off solenoid valves rather than by a proportional directional control valve. The relationship between the pulse width modulation (PWM) of a signal’s duty cycle and control law was determined experimentally, and a mathematical model of the whole system established. Owing to unknown disturbances and unmodeled dynamics, there are considerable uncertain nonlinearities and parametric uncertainties in this pneumatic system. A modified direct adaptive robust controller (DARC) was constructed to cope with these issues. The controller employs a gradient type adaptation law based on discontinuous projection mapping to guarantee that estimated unknown model parameters stay within a known bounded region, and uses a deterministic robust control strategy to weaken the effects of unmodeled dynamics, disturbances, and parameter estimation errors. By using discontinuous projection mapping, the parameter adaptation law and the robust control law can be synthesized separately. A recursive backstepping technology is applied to account for unmatched model uncertainties. Kalman filters were designed separately to estimate the motion states and the derivative of the intermediate control law in synthesizing the deterministic robust control law. Experimental results illustrate the effectiveness of the proposed controller. Key words On/off solenoid valve Tracking control Robust control Adaptive control Kalman filter Discontinuous projection
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.