Multiple Sox genes are expressed in stem cells or in differentiating neuro-sensory cells in the hydrozoan Clytia hemisphaerica
详细信息    查看全文
  • 作者:Muriel Jager (1)
    Eric Quéinnec (1)
    Hervé Le Guyader (1)
    Micha?l Manuel (1)
  • 刊名:EvoDevo
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:2
  • 期:1
  • 全文大小:9152KB
  • 参考文献:1. Kiefer JC: Back to basics: Sox genes. / Dev Dyn 2007, 236:2356-366. CrossRef
    2. Lefebvre V, Dumitriu B, Penzo-Méndez A, Han Y, Pallavi B: Control of cell fate and differentitation by Sry-related high-mobility-group box (Sox) transcription factors. / Int J Biochem Cell B 2007, 39:2195-214. CrossRef
    3. Chew LJ, Gallo V: The Yin and Yang of Sox proteins: activation and repression in development and disease. / J Neurosci Res 2009, 87:3277-287. CrossRef
    4. Ferri AL, Cavallaro M, Braida D, Di Cristofano A, Canta A, Vezzani A, Ottolenghi S, Pandolfi PP, Sala M, DeBiasi S, Nicolis SK: Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. / Development 2004, 131:3805-819. CrossRef
    5. Wilson M, Koopman P: Matching SOX: partner proteins and co-factors of the SOX family of transcriptional regulators. / Curr Opin Genet Dev 2002, 12:441-46. CrossRef
    6. Kondoh H, Kamachi Y: SOX-partner code for cell specification: regulatory target selection and underlying molecular mechanisms. / Int J Biochem Cell Biol 2010, 42:391-99. CrossRef
    7. Bowles J, Schepers G, Koopman P: Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. / Dev Biol 2000, 227:239-55. CrossRef
    8. Magie CR, Pang K, Martindale MQ: Genomic inventory and expression of Sox and Fox genes in the cnidarian Nematostella vectensis . / Dev Genes Evol 2005, 215:618-30. CrossRef
    9. Jager M, Queinnec E, Houliston E, Manuel M: Expansion of the SOX gene family predated the emergence of the Bilateria. / Mol Phylogenet Evol 2006, 39:468-77. CrossRef
    10. Jager M, Queinnec E, Chiori R, Le Guyader H, Manuel M: Insights into the early evolution of SOX genes from expression analyses in a ctenophore. / J Exp Zool B Mol Dev Evol 2008, 310:650-67. CrossRef
    11. Larroux C, Fahey B, Liubicich D, Hinman VF, Gauthier M, Gongora M, Green K, W?rheide G, Leys SP, Degnan BM: Developmental expression of transcription factor genes in a demosponge: insights into the origin of metazoan multicellularity. / Evol Dev 2006, 8:150-73. CrossRef
    12. Larroux C, Luke GN, Koopman P, Rokhsar DS, Shimeld SM, Degnan BM: Genesis and expansion of metazoan transcription factor gene classes. / Mol Biol Evol 2008, 25:980-96. CrossRef
    13. Pevny L, Placzek M: Sox genes and neural progenitor identity. / Curr Opin Neurobiol 2005, 15:7-3. CrossRef
    14. Wegner M, Stolt CC: From stem cells to neurons and glia: a Soxist's view of neural development. / Trends Neurosci 2005, 28:583-88. CrossRef
    15. Graham V, Khudyakov J, Ellis P, Pevny L: SOX2 functions to maintain neural progenitor identity. / Neuron 2003, 39:749-65. CrossRef
    16. Guth SI, Wegner M: Having it both ways: Sox protein function between conservation and innovation. / Cell Mol Life Sci 2008, 65:3000-018. CrossRef
    17. Pevny LH, Nicolis SK: Sox2 roles in neural stem cells. / Int J Biochem Cell Biol 2010, 42:421-24. CrossRef
    18. Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. / Cell 2006, 126:663-76. CrossRef
    19. Kerner P, Simionato E, Le Gouar M, Vervoort M: Orthologs of key vertebrate neural genes are expressed during neurogenesis in the annelid Platynereis dumerilii . / Evol Dev 2009, 11:513-24. CrossRef
    20. Phochanukul N, Russell S: No backbone but lots of SOX: the invertebrate SOX family. / Int J Biochem Cell Biol 2009, 42:453-64. CrossRef
    21. Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, S?rensen MV, Haddock SH, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G: Broad phylogenomic sampling improves resolution of the animal tree of life. / Nature 2008, 452:745-49. CrossRef
    22. Philippe H, Derelle R, Lopez P, Pick K, Borchiellini C, Boury-Esnault N, Vacelet J, Renard E, Houliston E, Quéinnec E, Da Silva C, Wincker P, Le Guyader H, Leys S, Jackson DJ, Schreiber F, Erpenbeck D, Morgenstern B, W?rheide G, Manuel M: Phylogenomics revives traditional views on deep animal relationships. / Curr Biol 2009, 19:706-12. CrossRef
    23. Schierwater B, Eitel M, Jakob W, Osigus H, Hadrys H, Dellaporta SL, Kolokotronis S, Desalle : Concatenated analysis sheds light on early metazoan evolution and fuels a modern "urmetazoon" hypothesis. / PLoS Biol 2009, 7:e1000020. CrossRef
    24. Pick KS, Philippe H, Schreiber F, Erpenbeck D, Jackson DJ, Wrede P, Wiens M, Alié A, Morgenstern B, Manuel M, W?rheide G: Improved phylogenomic taxon sampling noticeably affects nonbilaterian relationships. / Mol Biol Evol 2010, 27:1983-987. CrossRef
    25. Philippe H, Brinkmann H, Lavrov DV, Littlewood DTJ, Manuel M, W?rheide G, Baurain D: Resolving difficult phylogenetic questions: why more sequences are not enough. / PLoS Biol 2011, 9:e1000602. CrossRef
    26. Shinzato C, Iguchi A, Hayward DC, Technau U, Ball EE, Miller DJ: Sox genes in the coral Acropora millepora : divergent expression patterns reflect differences in developmental mechanisms within the Anthozoa. / BMC Evol Biol 2008, 8:311. CrossRef
    27. Alié A, Leclère L, Jager M, Dayraud C, Chang P, Le Guyader H, Quéinnec E, Manuel M: Somatic stem cells express Piwi and Vasa genes in an adult ctenophore: Ancient association of "germline genes" with stemness. / Dev Biol 2011, 350:183-97. CrossRef
    28. Houliston E, Momose T, Manuel M: Clytia hemisphaerica : a jellyfish cousin joins the laboratory. / Trends Genet 2010, 26:159-67. CrossRef
    29. Bodo F, Bouillon J: Etude histologique du développement embryonnaire de quelques Hydroméduses de Roscoff. / Cah Biol Mar 1968, 9:69-9.
    30. Bode HR, David CN: Regulation of a multipotent stem cell, the interstitial cell of Hydra. / Prog Biophys Mol Biol 1978, 33:189-06. CrossRef
    31. Bode HR, Heimfeld S, Chow MA, Huang LW: Gland cells arise by differentiation from interstitial cells in Hydra attenuata. / Dev Biol 1987, 122:577-85. CrossRef
    32. Bode HR, Gee LW, Chow MA: Neuron differentiation in hydra involves dividing intermediates. / Dev Biol 1990, 139:231-43. CrossRef
    33. Bode HR: The interstitial cell lineage of hydra: a stem cell system that arose early in evolution. / J Cell Sci 1996, 109:1155-164.
    34. Bouillon J: Classe des Hydrozoaires. In / Traité de Zoologie, Cnidaires, Ctenaires, 3(3). Edited by: Grassé P-P. Masson, Paris; 1994:29-16.
    35. Denker E, Manuel M, Leclère L, Le Guyader H, Rabet N: Ordered progression of nematogenesis from stem cells through differentiation stages in the tentacle bulb of Clytia hemisphaerica (Hydrozoa, Cnidaria). / Dev Biol 2008, 315:99-13. CrossRef
    36. Galliot B, Quiquand M, Ghila L, de Rosa R, Miljkovic-Licina M, Chera S: Origins of neurogenesis, a cnidarian view. / Dev Biol 2009, 332:2-4. CrossRef
    37. Thurm U, Brinkmann M, Golz R, Holtmann M, Oliver D, Sieger T: Mechanoreception and synaptic transmission of hydrozoan nematocytes. / Hydrobiologia 2004, (530-31):97-05.
    38. Weiss J, Meeks JJ, Hurley L, Raverot G, Frassetto A, Jameson JL: Sox3 is required for gonadal function, but not sex determination, in males and females. / Mol Cell Biol 2003, 23:8084-091. CrossRef
    39. Osaki E, Nishina Y, Inazawa J, Copeland NG, Gilbert DJ, Jenkins NA, Ohsugi M, Tezuka T, Yoshida M, Semba K: Identification of a novel Sry-related gene and its germ cell-specific expression. / Nucleic Acids Res 1999, 27:2503-510. CrossRef
    40. Assou S, Anahory T, Pantesco V, Le Carrour T, Pellestor F, Klein B, Reyftmann L, Dechaud H, De Vos J, Hamamah S: The human cumulus-oocyte complex gene-expression profile. / Human Reprod 2006, 21:1705-719. CrossRef
    41. Mukherjee A, Melnattur KV, Zhang M, Nambu JR: Maternal expression and function of the Drosophila sox gene Dichaete during oogenesis. / Dev Dyn 2006, 235:2828-835. CrossRef
    42. Wilson MJ, Dearden PK: Evolution of the insect Sox genes. / BMC Evol Biol 2008, 8:120. CrossRef
    43. Kanai-Azuma M, Kanai Y, Gad JM, Tajima Y, Taya C, Kurohmaru M, Sanai Y, Yonekawa H, Yazaki K, Tam PP, Hayashi Y: Depletion of definitive gut endoderm in Sox17-null mutant mice. / Development 2002, 129:2367-379.
    44. Leclère L: / Evolution de la reproduction sexuée des hydrozoaires: aspects historiques, analyse phylogénétique et développementale. Thèse de l'Université Pierre Marie Curie, Paris; 2008.
    45. Extavour CG, Akam M: Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. / Development 2003, 130:5869-884. CrossRef
    46. Extavour CGM: Evolution of the bilaterian germ line: lineage origin and modulation of specification mechanisms. / Integr Comp Biol 2007, 47:770-85. CrossRef
    47. Travis JA: Close look at urbisexuality. / Science 2007, 316:391-91. CrossRef
    48. Francois M, Koopman P, Beltrame M: SoxF genes: key players in the development of the cardio-vascular system. / Int J Biochem Cell Biol 2010, 42:445-48. CrossRef
    49. Chapman J, Kirkness EF, Simakov O, Hampson SE, Mitros T, Weinmaier T, Rattei T, Balasubramanian PG, Borman J, Busam D, Disbennett K, Pfannkoch C, Sumin N, Sutton GG, Viswanathan LD, Walenz B, Goodstein DM, Hellsten U, Kawashima T, Prochnik SE, Putnam NH, Shu S, Blumberg B, Dana CE, Gee L, Kibler DF, Law L, Lindgens D, Martinez DE, Peng J, / et al.: The dynamic genome of Hydra. / Nature 2010, 464:592-96. CrossRef
    50. Edgar RC: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. / BMC Bioinform 2004, 5:113. CrossRef
    51. Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. / Nucl Acid Symp Ser 41:95.
    52. Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by Maximum Likelihood. / Syst Biol 2003, (52):696-04.
    53. Swofford DL: / PAUP 4.0: Phylogenetic Analysis Using Parsimony (And Other Methods). Sunderland, MA, Sinauer Associates, Inc.; 1999.
    54. Ronquist F, Huelsenbeck JP, van der Mark P: MrBayes 3.1. [http://mrbayes.csit.fsu.edu/index.php] 2005.
    55. Chevalier S, Martin A, Leclère L, Amiel A, Houliston E: Polarised expression of FoxB and FoxQ2 genes during development of the hydrozoan Clytia hemisphaerica . / Dev Genes Evol 2006, 216:709-20. CrossRef
    56. Chiori R, Jager M, Denker E, Wincker P, Da Silva C, Le Guyader H, Manuel M, Queinnec E: Are Hox genes ancestrally involved in axial patterning? Evidence from the hydrozoan Clytia hemisphaerica (Cnidaria). / PLoS One 2009, 4:e4231. CrossRef
    57. Ohba H, Chiyoda T, Endo E, Yano M, Hayakawa Y, Sakaguchi M, Darnell RB, Okano HJ, Okano H: Sox21 is a repressor of neuronal differentiation and is antagonized by YB-1. / Neurosci Lett 2004, 358:157-60. CrossRef
  • 作者单位:Muriel Jager (1)
    Eric Quéinnec (1)
    Hervé Le Guyader (1)
    Micha?l Manuel (1)

    1. UPMC Univ Paris 06, UMR 7138 CNRS UPMC MNHN IRD, Case 05, 7 quai St Bernard, 75005, Paris, France
文摘
Background The Sox genes are important regulators of animal development belonging to the HMG domain-containing class of transcription factors. Studies in bilaterian models have notably highlighted their pivotal role in controlling progression along cell lineages, various Sox family members being involved at one side or the other of the critical balance between self-renewing stem cells/proliferating progenitors, and cells undergoing differentiation. Results We have investigated the expression of 10 Sox genes in the cnidarian Clytia hemisphaerica. Our phylogenetic analyses allocated most of these Clytia genes to previously-identified Sox groups: SoxB (CheSox2, CheSox3, CheSox10, CheSox13, CheSox14), SoxC (CheSox12), SoxE (CheSox1, CheSox5) and SoxF (CheSox11), one gene (CheSox15) remaining unclassified. In the planula larva and in the medusa, the SoxF orthologue was expressed throughout the endoderm. The other genes were expressed either in stem cells/undifferentiated progenitors, or in differentiating (-ed) cells with a neuro-sensory identity (nematocytes or neurons). In addition, most of them were expressed in the female germline, with their maternal transcripts either localised to the animal region of the egg, or homogeneously distributed. Conclusions Comparison with other cnidarians, ctenophores and bilaterians suggest ancient evolutionary conservation of some aspects of gene expression/function at the Sox family level: (i) many Sox genes are expressed in stem cells and/or undifferentiated progenitors; (ii) other genes, or the same under different contexts, are associated with neuro-sensory cell differentiation; (iii) Sox genes are commonly expressed in the germline; (iv) SoxF group genes are associated with endodermal derivatives. Strikingly, total lack of correlation between a given Sox orthology group and expression/function in stem cells/progenitors vs. in differentiating cells implies that Sox genes can easily switch from one side to the other of the balance between these fundamental cellular states in the course of evolution.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.