New genetic markers reveal population genetic structure at different spatial scales in the opportunistic polychaete Pygospio elegans
详细信息    查看全文
  • 作者:J. E. Kes盲niemi (1) jenni.kesaniemi@jyu.fi
    C. Bostr枚m (2)
    K. E. Knott (1)
  • 关键词:Spionidae &#8211 ; Microsatellite &#8211 ; Spatial genetic structure &#8211 ; Dispersal &#8211 ; Opportunistic &#8211 ; Plasticity
  • 刊名:Hydrobiologia
  • 出版年:2012
  • 出版时间:July 2012
  • 年:2012
  • 卷:691
  • 期:1
  • 页码:213-223
  • 全文大小:239.0 KB
  • 参考文献:1. Addison, J. A. & M. W. Hart, 2005. Spawning, copulation and inbreeding coefficients in marine invertebrates. Biology Letters 1: 450–453.
    2. Anger, V., 1984. Reproduction in Pygospio elegans (Spionidae) in relation to its geographical origin and to environmental conditions: a preliminary report. Fortschritte der Zoologie 29: 45–51.
    3. Anger, K., V. Anger & E. Hagmeier, 1986. Laboratory studies on larval growth of Polydora ligni, Polydora ciliata and Pygospio elegans (Polychaeta, Spionidae). Helgolander Meeresuntersuchungen 40: 277–395.
    4. Ayre, D. J. & T. P. Hughes, 2000. Genotypic diversity and gene flow in brooding and spawning corals along the Great Barrier Reef, Australia. Evolution 54: 1590–1605.
    5. Bay, L. K., M. J. M. Caley & R. H. Crozier, 2008. Meta-population structure in a coral reef fish demonstrated by genetic data on patterns of migration, extinction and re-colonisation. BMC Evolutionary Biology 8: 248–265.
    6. Beukema, J. J., E. C. Flach, R. Dekker & M. Starink, 1999. A longterm study of the recovery of the macrozoobenthos on large defaunated plots on a tidal flat in the Wadden Sea. Journal of Sea Research 42: 235–254.
    7. Bolam, S. G., 2004. Population structure and reproductive biology of Pygospio elegans (Polychaeta:Spionidae) on an intertidal sandflat, Firth of Forth, Scotland. Invertebrate Biology 123: 260–268.
    8. Bolam, S. G. & T. F. Fernandes, 2002. Dense aggregations of tube-building polychaetes: response to small-scale disturbances. Journal of Experimental Marine Biology and Ecology 269: 197–222.
    9. Bolam, S. G. & T. F. Fernandes, 2003. Dense aggregations of Pygospio elegans (Claparede): Effect on macrofaunal community structure and sediments. Journal of Sea Research 49: 171–185.
    10. Bostr枚m, C. & E. Bonsdorff, 1997. Community structure and spatial variation of benthic invertebrates associated with Zostera marina (L.) beds in the northern Baltic Sea. Journal of Sea Research 37: 153–166.
    11. Bostr枚m, C. & E. Bonsdorff, 2000. Zoobenthic community establishment and habitat complexity - the importance of seagrass shoot density, morphology and physical disturbance for faunal recruitment. Marine Ecology Progress Series 205: 123–138.
    12. Bostr枚m, C., K. O’Brien, C. Roos & J. Ekebom, 2006. Environmental variables explaining structural and functional diversity of seagrass macrofauna in an archipelago landscape. Journal of Experimental Marine Biology and Ecology 335: 52–73.
    13. Bostr枚m, C., A. T枚rnroos & E. Bonsdorff, 2010. Invertebrate dispersal and habitat heterogeneity: Expression of biological traits in a seagrass landscape. Journal of Experimental Marine Biology and Ecology 390: 106–117.
    14. Branch, G. M. & C. N. Steffani, 2004. Can we predict the effects of alien species? A case-history of the invasion of South Africa by Mytilus galloprovincialis (Lamarck). Journal of Experimental Marine Biology and Ecology 300: 189–215.
    15. Bridges, T. S., L. A. Levin, D. Cabera & G. Plaia, 1994. Effects of sediment amended with sewage, algae, or hydrocarbons on growth and reproduction in two opportunistic polychaetes. Journal of Experimental Marine Biology and Ecology 177: 99–119.
    16. Chapuis, M.-P. & A. Estoup, 2007. Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution 24: 621–631.
    17. Crawford, N. G., 2010. SMOGD: Software for the measurement of genetic diversity. Molecular Ecology Resources 10: 556–557.
    18. Desprez, M., H. Rybarczyk, J. G. Wilson, J. P. Ducrotoy, F. Seuer, R. Olivesi & B. Elkaim, 1992. Biological impact of eutrophication in the Bay of Somme and the induction and impact of anoxia. Netherlands Journal of Sea Research 30: 149–159.
    19. Dupont, L., F. Viard, M. J. Dowell & D. D. Bishop, 2009. Fine- and regional-scale genetic structure of the exotic ascidian Styela clava (Tunicata) in southwest England, 50 years after its introduction. Molecular Ecology 18: 442–453.
    20. Excoffier, L. & H. E. L. Lischer, 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564–567.
    21. Fleischer, D. & M. L. Zettler, 2008. An adjustment of benthic ecological quality assessment to effects of salinity. Marine Pollution Bulletin 58: 351–357.
    22. Goudet, J., 1995. FSTAT (version 1.2): A computer program to calculate F-statistics. Journal of Heredity 86: 485–486.
    23. Grapputo, A., 2006. Development and characterization of microsatellite markers in the Colorado potato beetle, Leptinotarsa decemlineata. Molecular Ecology Notes 6: 1177–1179.
    24. Grassle, J. F. & J. P. Grassle, 1974. Opportunistic life histories and genetic systems in marine benthic polychaetes. Journal of Marine Research 32: 253–284.
    25. Gudmundsson, H., 1985. Life history patterns of polychaete species of the family Spionidae. Journal of the Marine Biological Association of the United Kingdom 65: 93–111.
    26. Hannerz, L., 1956. Larval development of the polychaete families Spionidae Sars, Disomidae Mesnil and Poecilochaetidae N. fam. in the Gullmar Fjord (Sweden). Zoologiska Bidrag fr氓n Uppsala 31: 1–204.
    27. Hedgecock, D., 1994. Does variance in reproductive success limit effective population size of marine organisms? In Beaumont, A. R. (ed.), Genetics and Evolution of Aquatic Organisms. Chapman & Hall, London: 122–134.
    28. Hellberg, M. E., R. S. Burton, J. E. Neigel & S. R. Palumbi, 2002. Genetic assessment of connectivity among marine populations. Bulletin of Marine Science 70: 273–290.
    29. Johnson, M. S., K. Holborn & R. Black, 1993. Fine-scale patchiness and genetic heterogeneity of recruits of the corralivorous gastropod Drupella cornus. Marine Biology 117: 91–96.
    30. Kalinowski, S. T., 2005. HP-RARE 1.0: A computer program for performing rarefaction on measures of allelic richness. Molecular Ecology Notes 5: 187–189.
    31. Karhan, S. U., E. Kalkan, N. Simboura, E. Mutlu & M. Bekb枚let, 2008. On the Occurrence and Established Populations of the Alien Polychaete Polydora cornuta Bosc, 1802 (Polychaeta: Spionidae) in the Sea of Marmara and the Bosphorus Strait (Turkey). Mediterranean Marine Science 9: 5–19.
    32. Kes盲niemi, J. E., P. D. Rawson, S. M. Lindsay & K. E. Knott, 2012. Phylogenetic analysis of cryptic speciation in the polychaete Pygospio elegans. Ecology and Evolution. doi:10.1002/ece3.226.
    33. Kube, J. & M. Powilleit, 1997. Factors controlling the distribution of Marenzelleria cf. viridis, Pygospio elegans and Steblospio shrubsoli (Polychaeta: Spionidae) in the southern Baltic Sea, with special attention for the response to an event of hypoxia. Aquatic Ecology 31: 187–198.
    34. Levin, L. A., 1984. Life history and dispersal patterns in a dense infaunal polychaete assemblage: Community structure and response to disturbance. Ecology 65: 1185–1200.
    35. Levin, L. A., 1986. Effects of enrichment on reproduction in the opportunistic polychaete Streblospio benedicti (Webster): A mesocosm study. Biological Bulletin 171: 143–160.
    36. McMahon, R. F., 2002. Evolutionary and physiological adaptations of aquatic invasive animals: r selection versus resistance. Canadian Journal of Fisheries and Aquatic Sciences 59: 1235–1244.
    37. Morgan, T. S. 1997. The formation and dynamics of Pygospio elegans tube-beds in the Somme Bay, France. Dissertation, Southampton University.
    38. Morgan, T. S., A. D. Rogers, G. L. J. Paterson, L. E. Hawkins & M. Sheader, 1999. Evidence for poecilogony in Pygospio elegans (Polychaete: Spionidae). Marine Ecology Progress Series 178: 121–132.
    39. Muus, B. J., 1967. The fauna of Danish estuaries and lagoons. Distribution and ecology of dominating species in the shallow reaches of the mesohaline zone. Meddelelser: Danmarks Fiskeri- og Havundersogelser 5: 3–316.
    40. Pearson, T. H. & R. Rosenberg, 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology – An Annual Review, vol 16: 229–311
    41. Pechenik, J. A., 1999. On the advantages and disadvantages of larval stages in benthic invertebrate life cycles. Marine Ecology Progress Series 177: 269–297.
    42. Pedersen, T. M., J. L. S. Hansen, A. B. Josefson & B. W. Hansen, 2008. Mortality through ontogeny of soft-bottom marine invertebrates with planktonic larvae. Journal of Marine Systems 73: 185–207.
    43. Pianka, E. R., 1970. On r- and K-selection. American Naturalist 104: 592–597.
    44. Porter, J. S., J. S. Ryland & G. R. Carvalho, 2002. Micro- and macrogeographic genetic structure in bryozoans with different larval strategies. Journal of Experimental Marine Biology and Ecology 272: 119–130.
    45. Rasmussen, E., 1953. Asexual reproduction in Pygospio elegans Clapar猫de (Polychaeta sedentaria). Nature 171: 1161–1162.
    46. Rasmussen, E., 1973. Systematics and ecology of the Isefjord marine fauna (Denmark). Ophelia 11: 1–495.
    47. Raymond, M. & F. Rousset, 1995. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. Journal of Heredity 86: 248–249.
    48. Rozen S. & H. J. Skaletsky, 2000. PRIMER 3 on the WWW for general users and for biologist programmers. In Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press, Totowa: 365–386.
    49. Rybarczyk, H., M. Desprez, J.-P. Ducrotoy, R. Olivesi, R. Delesmont, F. Jarnet & B. Elkaim, 1993. Dynamics of nutrients and faecal bacteria in a macrotidal estuary, The Bay of Somme (France). Netherlands Journal of Aquatic Ecology 27: 395–404.
    50. Schuelke, M., 2000. An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology 18: 233–234.
    51. Streftaris, N. & A. Zenetos, 2006. Alien marine species in the Mediterranean – the 100 ‘Worst Invasives’ and their impact. Mediterranean Marine Science 7: 87–118.
    52. Tatarenkov, A., R. B. J枚nsson, L. Kautsky & K. Johannesson, 2007. Genetic structure of Fucus vesiculosus (Phaeophyceae) over spatial scales from 10 m to 800 km. Journal of Phycology 43: 675–685.
    53. Taylor, M. S. & M. E. Hellberg, 2003. Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish. Science 299: 107–109.
    54. Todd, C. D., W. J. Lambert & J. P. Thorpe, 1998. The genetic structure of intertidal populations of two species of nudibranch mollusks with planktotrophic and pelagic lecithotrophic larval stages: are pelagic larvae “for” dispersal? Journal of Experimental Marine Biology and Ecology 118: 1–28.
    55. Tsutsumi, H., 1987. Population dynamics of Capitella capitata (Polychaeta; Capitellidae) in an organically polluted cove. Marinr Ecology Progress Series 36: 139–149.
    56. Tsutsumi, H., 1990. Population persistence of Capitella sp. (Polychaeta; Capitellidae) on a mud flat subject to environmental disturbance by organic enrichment. Marine Ecology Progress Series 63: 147–156.
    57. Underwood, J. N., L. D. Smith, M. J. H. Van Oppen & J. P. Gilmour, 2007. Multiple scales of genetic connectivity in a brooding coral on isolated reefs following catastrophic bleaching. Molecular Ecology 16: 771–784.
    58. Valanko, S., A. Norkko & J. Norkko, 2010. Strategies of post-larval dispersal in non-tidal soft-sediment communities. Journal of Experimental Marine Biology and Ecology 384: 51–60.
    59. Van Oosterhout, C., W. F. Hutchinson, D. P. M. Wills & P. Shipley, 2004. Micro-checker: Software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4: 535–538.
    60. Warwick, R. M., 1986. A new method for detecting pollution effects on marine macrobenthic communities. Marine Biology 92: 557–562.
    61. Weber, L. I., R. G. Hartnoll & J. P. Thorpe, 2000. Genetic divergence and larval dispersal in two spider crabs (Crustacea:Decapoda). Hydrobiologia 420: 211–219.
    62. Whitaker, K., 2004. Non-random mating and population genetic subdivision of two broadcasting corals at Ningaloo Reef, Western Australia. Marine Biology 144: 593–603.
    63. Whitlatch, R. B. & R. N. Zajac, 1985. Biotic interactions among estuarine infaunal opportunistic species. Marine Ecology Progress Series 21: 299–311.
    64. Wilson, W. H., Jr., 1983. The role of density dependence in a marine infaunal community. Ecology 64: 295–306.
    65. Zajac, R. N., 1991. Population ecology of Polydora ligni (Polychaeta: Spionidae): I. Seasonal variation in population characteristics and reproductive activity. Marine Ecology Progress Series 77: 197–206.
    66. Zane, L., L. Bargelloni & T. Patarnello, 2002. Strategies for microsatellite isolation: A review. Molecular Ecology 11: 1–16.
  • 作者单位:1. Department of Biological and Environmental Science, University of Jyv盲skyl盲, P.O. Box 35, 40014 Jyv盲skyl盲, Finland2. Department of Biosciences, Environmental and Marine Biology, 脜bo Akademi University, Artillerigatan 6, 20520 脜bo, Finland
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Hydrobiology
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-5117
文摘
Identifying population genetic structure can shed light on how life history characteristics of opportunistic species affect population turnover and (re)colonization of disturbed habitats. Plasticity in life history traits can be particularly important for opportunistic species. In this study, we investigated population genetic structure of two populations of Pygospio elegans, an opportunistic polychaete worm. The populations represented extremes of the range of habitats P. elegans exploits: a subtidal brackish site where P. elegans is found at lower densities associated with seagrass patches; and a disturbed mudflat in a marine tidal environment where P. elegans can reach very high densities with patchy distribution. Eight novel microsatellite loci were isolated from P. elegans for the genetic studies. We found higher genetic diversity in the mudflat, which could be due to larger population size, opportunistic behaviour, or the predominantly planktonic larval production of P. elegans in this population. No genetic structure was found within the seagrass patch in the Archipelago Sea (SW Finland) where samples were separated by 5–15 m. However, low structure was observed in the Bay of Somme, mudflat (France) where samples were separated by approx. 100 m. When the two locations were compared, high genetic differentiation was observed, indicating restrictions on gene flow between the sea areas. The microsatellite loci were highly polymorphic and proved to be useful tools for investigating the genetic diversity and genetic structure in P. elegans at different spatial scales, despite deviations from Hardy–Weinberg expectations at some loci.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.