Inertia in Friedmann Universes with variable \(G\) and \(\varLambda\)
详细信息    查看全文
  • 作者:J. Sultana ; D. Kazanas
  • 关键词:Inertia ; Friedmann Universes ; Mach’s Principle
  • 刊名:Astrophysics and Space Science
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:359
  • 期:1
  • 全文大小:719 KB
  • 参考文献:Abbussattar, Vishwakarma, R.G.: Class. Quantum Gravity 14, 945 (1997) ADS View Article
    Abdel-Rahaman, A.-M.M.: Gen. Relativ. Gravit. 22, 665 (1990) ADS View Article
    Accetta, F.C., Krauss, K.M., Romanelli, P.L.: Phys. Lett. B 278, 146 (1990) ADS View Article
    Arbab, A.I.: Gen. Relativ. Gravit. 29, 61 (1997) MathSciNet ADS View Article
    Arzoumanian, Z.: PhD thesis, Princeton University Press, 1995
    Ba?ados, M., Silk, J., West, S.W.: Phys. Rev. Lett. 103, 111102 (2009) ADS View Article
    Barbour, J.B.: In: Barbour, J.B., Pfister (eds.) Mach’s Principle: From Newton’s Bucket to Quantum Gravity. Birkhauser, Basel (1995)
    Barrow, J.D.: Phys. Rev. D 35, 1805 (1987) ADS View Article
    Benvenuto, O.G., Garcia-Berro, E., Isern, J.: Phys. Rev. D 69, 082002 (2004) ADS View Article
    Berman, M.S.: Gen. Relativ. Gravit. 23, 465 (1991a) ADS View Article
    Berman, M.S.: Phys. Rev. D 43, 1075 (1991b) ADS View Article
    Berman, M.S.: Astrophys. Space Sci. 318, 269 (2008) ADS View Article
    Berman, M.S.: Int. J. Theor. Phys. 48, 3257 (2009) View Article
    Berry, M.V.: Principles of Cosmology and Gravitation. Cambridge University Press, Cambridge (1976)
    Bertolami, O.: Nuovo Cimento B 93, 36 (1986) ADS View Article
    Bottino, A., Kim, C.W., Song, J.: Phys. Lett. B 351, 116 (1995) ADS View Article
    Brans, C., Dicke, R.H.: Phys. Rev. 124, 925 (1961) MathSciNet ADS View Article
    Carroll, S.M.: Spacetime and Geometry: An Introduction to General Relativity. Addison Wesley, Reading (2004)
    Copi, C.J., Davis, A.N., Krauss, L.M.: Phys. Rev. Lett. 92, 171301 (2004) ADS View Article
    Crawford, J.P., Kazanas, D.: Astrophys. J. 701, 1701 (2009) ADS View Article
    Dirac, P.A.M.: Nature 139, 323 (1937) ADS View Article
    Dirac, P.A.M.: Proc. R. Soc. Lond. A 365, 19 (1979) MathSciNet ADS View Article
    Freese, K., et al.: Nucl. Phys. B 287, 797 (1987) ADS View Article
    Gaztanaga, E., et al.: Phys. Rev. D 65, 023506 (2001) ADS View Article
    Giné, J.: Int. J. Theor. Phys. 50, 607 (2011) View Article
    Goldman, T., et al.: Phys. Lett. B 281, 219 (1992) ADS View Article
    Graneau, P., Graneau, N.: Gen. Relativ. Gravit. 35, 751 (2003) MathSciNet ADS View Article
    Guenther, D.B., et al.: Astrophys. J. 498, 871 (1998) ADS View Article
    Haisch, B., Rueda, A., Puthoff, H.E.: Phys. Rev. A 49, 678 (1994) ADS View Article
    Hellings, R.W.: In: Melinkov, V. (ed.) Problems in Gravitation. State University Press, Moscow (1987)
    Jamil, M., Debnath, U.: Int. J. Theor. Phys. 50, 1602 (2011) MathSciNet View Article
    Jordan, P.: Naturwissenschaften 26, 417 (1938) ADS View Article
    Kalligas, D., Wesson, P., Everitt, C.W.F.: Gen. Relativ. Gravit. 24, 351 (1992) MathSciNet ADS View Article
    Kaspi, V.M., Taylor, J.H., Ryba, M.: Astrophys. J. 428, 713 (1994) ADS View Article
    Kazanas, D.: Astrophys. J. 241, L59 (1980) ADS View Article
    Lau, Y.: Aust. J. Phys. 38, 547 (1985) ADS View Article
    Lense, J., Thirring, H.: Phys. Z. 19, 156 (1918)
    Li, Y.: Class. Quantum Gravity 28, 225006 (2011) ADS View Article
    Mach, E.: The Science of Mechanics—A Critical Historical Account of Its Development. Open Court, La Salle (1960)
    Martins, A.A., Pinheiro, M.J.: Int. J. Theor. Phys. 47, 2706 (2008) MathSciNet View Article
    McGaugh, S.S.: Can. J. Phys. 93, 250 (2015) ADS View Article
    Moffat, J.W.: J. Cosmol. Astropart. Phys. 03, 004 (2006) MathSciNet ADS View Article
    Moffat, J.W., Toth, J.W.: Mon. Not. R. Astron. Soc. 395, L25 (2009) ADS View Article
    Nordtvedt, K.: Phys. Rev. 169, 1017 (1968) ADS View Article
    Peebles, P.J.E., Ratra, B.: Astrophys. J. 325, L17 (1988) ADS View Article
    Peters, P.C.: J. Math. Phys. 10, 1216 (1969) ADS View Article
    Ponce de Leone, J.: Class. Quantum Gravity 20, 5321 (2003) ADS View Article
    Ponce de Leon, J.: Class. Quantum Gravity 29, 135009 (2012) MathSciNet ADS View Article
    Pradhan, A., Singh, A.K., Otarod, S.: Rom. J. Phys. 52, 445 (2007)
    Ratra, B., Peebles, P.J.E.: Phys. Rev. D 37, 3406 (1988) ADS View Article
    Ray, S., et al.: Int. J. Mod. Phys. D 16, 1791 (2007) ADS View Article
    Ray, S., et al.: Int. J. Theor. Phys. 50, 2687 (2011) View Article
    Reasenberg, R.D.: Philos. Trans. R. Soc. A 310, 227 (1983) ADS View Article
    Reuter, M., Weyer, H.: Phys. Rev. D 70, 124028 (2004) ADS View Article
    Rindler, W., Ishak, M.: Phys. Rev. D 76, 043006 (2007) ADS View Article
    Rubano, C., Scudellaro, P.: Gen. Relativ. Gravit. 37, 521 (2005) MathSciNet ADS View Article
    Sciama, D.W.: Mon. Not. R. Astron. Soc. 113, 34 (1953) MathSciNet ADS View Article
    Signore, R.: Nuovo Cimento 112B, 1593 (1997) MathSciNet ADS
    Singh, N.I., Devi, Y.B., Singh, S.S.: Astrophys. Space Sci. 345, 213 (2013) ADS View Article
    Singh, T., Beesham, A., Mbokazi, W.S.: Gen. Relativ. Gravit. 30, 573 (1998) MathSciNet ADS View Article
    Stairs, I.H.: Living
  • 作者单位:J. Sultana (1)
    D. Kazanas (2)

    1. Department of Mathematics, Faculty of Science, University of Malta, Msida, MSD2080, Malta
    2. Astrophysics Science Division, NASA/Goddard Space Flight Center Greenbelt, Maryland, 20771, USA
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Astronomy
  • 出版者:Springer Netherlands
  • ISSN:1572-946X
文摘
In light of the recent interest in dynamical dark energy models based on a cosmology with varying gravitational and cosmological parameters \(G\) and \(\varLambda\), we present here a model of inertia in a type of Friedmann universe with \(G = G_{0}(A/A_{0})^{\sigma}\); \(A\) being the dimensionless scale factor, that was recently studied by Singh et al. (Astrophys. Space Sci. 345:213, 2013). The proposed Machian model of inertia utilizes the curved space generalization of Sciama’s law of inertial induction, which is based on the analogy between the retarded far fields of electrodynamics and those of gravitation, and expresses the total inertial force \(F= -ma\) on an accelerating mass \(m\) in terms of contributions from all matter in the observable Universe. We show that for a varying Friedmann model with \(\sigma=-3/2\), inertial induction alone can account for the total inertial force on the accelerating mass. We then compare this cosmological model with current observational constraints for the variation of \(G\).
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.