Copper nanoparticles stabilized by reduced graphene oxide for CO2 reduction reaction
详细信息    查看全文
  • 作者:Diego C. B. Alves (1) (2)
    Rafael Silva (3)
    Damien Voiry (1)
    Tewodros Asefa (3) (4)
    Manish Chhowalla (1)

    1. Materials Science and Engineering
    ; Rutgers University ; 607 Taylor Road ; Piscataway ; NJ ; 08854 ; USA
    2. Departamento de F铆sica
    ; Universidade Federal de Minas Gerais ; Belo Horizonte ; MG ; 31270-901 ; Brazil
    3. Department of Chemistry and Chemical Biology
    ; Rutgers University ; 610 Taylor Road ; Piscataway ; NJ ; 08854 ; USA
    4. Department of Chemical and Biochemical Engineering
    ; Rutgers University ; 98 Brett Road ; Piscataway ; NJ ; 08854 ; USA
  • 关键词:CO2 reduction ; Synthetic photosynthesis ; Reduced graphene oxide ; Copper nanoparticles ; Electrocatalysis
  • 刊名:Materials for Renewable and Sustainable Energy
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:4
  • 期:1
  • 全文大小:984 KB
  • 参考文献:1. Turner, JA (1999) A realizable renewable energy future. Science 285: pp. 687-689 CrossRef
    2. Somorjai, GA, Frei, H, Park, JY (2009) Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques. J. Am. Chem. Soc. 131: pp. 16589-16605 CrossRef
    3. Silva, R, Asefa, T (2012) Noble metal-free oxidative electrocatalysts: polyaniline and Co(II)-polyaniline nanostructures hosted in nanoporous silica. Adv. Mater. 24: pp. 1878-1883 CrossRef
    4. Silva, R, Al-Sharab, J, Asefa, T (2012) Edge-Plane-Rich Nitrogen-Doped Carbon Nanoneedles and Efficient Metal-Free Electrocatalysts. Angew. Chemie. 124: pp. 7283-7287 CrossRef
    5. Gattrell, M, Gupta, N, Co, A (2006) A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J. Electroanal. Chem. 594: pp. 1-19 CrossRef
    6. Varghese, OK, Paulose, M, Latempa, TJ, Grimes, CA (2009) High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano. Lett. 9: pp. 731-737 CrossRef
    7. Olah, GA, Goeppert, A, Prakash, GKS (2009) Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J. Org. Chem. 74: pp. 487-498 CrossRef
    8. Whipple, DT, Kenis, PJA (2010) Prospects of CO2 utilization via direct heterogeneous electrochemical reduction. J. Phys. Chem. Lett. 1: pp. 3451-3458 CrossRef
    9. Kuhl, KP, Cave, ER, Abram, DN, Jaramillo, TF (2012) New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy. Environ. Sci. 5: pp. 7050 CrossRef
    10. Centi, G, Perathoner, S (2009) Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal. Today 148: pp. 191-205 CrossRef
    11. Dewulf, DW, Jin, T, Bard, AJ (1989) Electrochemical and surface studies of carbon-dioxide reduction to methane and ethylene at copper electrodes in aqueous-solutions. J. Electrochem. Soc. 136: pp. 1686-1691 CrossRef
    12. Hori, Y, Wakebe, H, Tsukamoto, T, Koga, O (1994) Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 39: pp. 1833-1839 CrossRef
    13. Azuma, M, Hashimoto, K (1990) Electrochemical reduction of carbon dioxide on various metal electrodes in low-temperature aqueous KHCO3 media. J. Electrochem. Soc. 137: pp. 1772-1778 CrossRef
    14. Kaneco, S, Ueno, Y, Katsumata, H, Suzukib, T, Ohta, K (2006) Electrochemical reduction of CO2 in copper particle-suspended methanol. Chem. Eng. J. 119: pp. 107-112 CrossRef
    15. Peterson, AA, Abild-Pedersen, F, Studt, F, Rossmeisl, J, Norskov, JL (2010) How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy. Environ. Sci. 3: pp. 1311 CrossRef
    16. Hori, Y, Murata, A, Takahashi, R (1989) Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc. Faraday. Trans. 1: pp. 2309 CrossRef
    17. Li, CW, Kanan, MW (2012) CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 134: pp. 7231-7234 CrossRef
    18. Xu, Z, Lai, E, Shao-Horn, Y, Hamad-Schifferli, K (2012) Compositional dependence of the stability of AuCu alloy nanoparticles. Chem. Commun. (Camb.) 48: pp. 5626-5628 CrossRef
    19. Perez, J, Gonzalez, ER, Villullas, HM (1998) Hydrogen evolution reaction on gold single-crystal electrodes in acid solutions. J. Phys. Chem. B. 102: pp. 10931-10935 CrossRef
    20. Eda, G, Chhowalla, M (2010) Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22: pp. 2392-2415 CrossRef
    21. Tang, L, Chang, H, Liu, Y, Li, J (2012) Duplex DNA/graphene oxide biointerface: from fundamental understanding to specific enzymatic effects. Adv. Funct. Mater. 22: pp. 3083-3088 CrossRef
    22. Liu, F, Song, S, Xue, D, Zhang, H (2012) Folded structured graphene paper for high performance electrode materials. Adv. Mater. 24: pp. 1089-1094 CrossRef
    23. Wu, Z-S, Winter, A, Chen, L, Sun, Y, Turchanin, A, Feng, X, M眉llen, K (2012) Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Adv. Mater. 24: pp. 5130-5135 CrossRef
    24. Wang, J, Zhang, X-B, Wang, Z-L, Wang, L-M, Zhang, Y (2012) Rhodium鈥搉ickel nanoparticles grown on graphene as highly efficient catalyst for complete decomposition of hydrous hydrazine at room temperature for chemical hydrogen storage. Energy. Environ. Sci. 5: pp. 6885 CrossRef
    25. Li, Y, Wang, H, Xie, L, Liang, Y, Hong, G, Dai, H (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133: pp. 7296-7299 CrossRef
    26. Wu, Z, Yang, S, Sun, Y, Parvez, K, Feng, X, M眉llen, K (2012) 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 134: pp. 9082-9085 CrossRef
    27. Bagri, A, Mattevi, C, Acik, M, Chabal, YJ, Chhowalla, M, Shenoy, VB, Vivek, B (2010) Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2: pp. 581-587 CrossRef
    28. Bagri, A, Grantab, R, Medhekar, NV, Shenoy, VB (2010) Stability and formation mechanisms of carbonyl- and hydroxyl-decorated holes in graphene oxide. J. Phys. Chem. C 114: pp. 12053-12061 CrossRef
    29. Dreyer, DR, Park, S, Bielawski, CW, Ruoff, RS (2010) The chemistry of graphene oxide. Chem. Soc. Rev. 39: pp. 228-240 CrossRef
    30. Loh, KP, Bao, Q, Eda, G, Chhowalla, M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2: pp. 1015-1024 CrossRef
    31. Eda, G, Fanchini, G, Chhowalla, M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3: pp. 270-274 CrossRef
    32. G贸mez-Navarro, C, Weitz, RT, Bittner, AM, Scolari, M, Mews, A, Burghard, M, Kern, K (2007) Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano. Lett. 7: pp. 3499-3503 CrossRef
    33. Sahoo, NG, Pan, Y, Li, L, Chan, SH (2012) Graphene-based materials for energy conversion. Adv. Mater. 24: pp. 4203-4210 CrossRef
    34. Wen, Z, Cui, S, Pu, H, Mao, S, Yu, KH, Feng, XL, Chen, JH (2011) Metal nitride/graphene nanohybrids: general synthesis and multifunctional titanium nitride/graphene electrocatalyst. Adv. Mater. 23: pp. 5445-5450 CrossRef
    35. Yu, X, Kuai, L, Geng, B (2012) CeO2/rGO/Pt sandwich nanostructure: rGO-enhanced electron transmission between metal oxide and metal nanoparticles for anodic methanol oxidation of direct methanol fuel cells. Nanoscale 4: pp. 5738-5743 CrossRef
    36. Li, Y, Zhou, W, Wang, H, Xie, L, Liang, Y, Wei, F, Idrobo, J-C, Pennycook, SJ, Dai, H (2012) An oxygen reduction electrocatalyst based on carbon nanotube鈥揼raphene complexes. Nat. Nanotechnol. 7: pp. 394-400 CrossRef
    37. Hirata, M, Gotou, T, Horiuchi, S, Fujiwara, M, Ohba, M (2004) Thin-film particles of graphite oxide 1. Carbon. N. Y. 42: pp. 2929-2937
    38. Wang, Y, Asefa, T (2010) Poly(allylamine)-stabilized colloidal copper nanoparticles: synthesis, morphology, and their surface-enhanced Raman scattering properties. Langmuir 26: pp. 7469-7474 CrossRef
    39. Pedersen, DB, Wang, S (2007) Surface plasmon resonance spectra of 2.8聽卤聽0.5聽nm diameter copper nanoparticles in both near and far fields. J. Phys. Chem. C 111: pp. 17493-17499 CrossRef
    40. Goncalves, G, Marques, PAAP, Granadeiro, CM, Nogueira, HIS, Singh, MK, Gracio, J (2009) Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth. Chem. Mater. 21: pp. 4796-4802 CrossRef
    41. Acik, M, Lee, G, Mattevi, C, Pirkle, A, Wallace, RM, Chhowalla, M, Cho, K, Chabal, Y (2011) The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy. J. Phys. Chem. C 115: pp. 19761-19781 CrossRef
    42. Silva, R, Kunita, MH, Girotto, EM, Radovanovic, E, Muniz, EC, Carvalho, GM, Rubira, AF (2008) Synthesis of Ag-PVA and Ag-PVA/PET-s20 composites by supercritical CO 2 method and study of silver nanoparticle. Growth. 19: pp. 1224-1229
    43. Kou, R, Shao, Y, Mei, D, Nie, Z, Wang, D, Wang, C, Viswanathan, VV, Park, S, Aksay, IA, Lin, Y, Wang, Y, Liu, J (2011) Stabilization of electrocatalytic metal nanoparticles at metal鈥搈etal oxide鈥揼raphene triple junction points. J. Am. Chem. Soc. 133: pp. 2541-2547 CrossRef
    44. Compton, OC, Jain, B, Dikin, DA, Abouimrane, A, Amine, K, Nguyen, ST (2011) Chemically active reduced graphene oxide with tunable C/O ratios. ACS. Nano. 5: pp. 4380-4391 CrossRef
    45. Mattevi, C, Eda, G, Agnoli, S, Miller, S, Mkhoyan, KA, Celik, O, Mastrogiovanni, D, Granozzi, G, Garfunkel, E, Chhowalla, M (2009) Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 19: pp. 2577-2583 CrossRef
    46. Hu, J, Liu, P, Chen, L (2012) Comparison of surface plasmon resonance responses to dry/wet air for Ag, Cu, and Au/SiO2. Appl. Opt. 51: pp. 1357-1360 CrossRef
    47. Blosi, M, Albonetti, S, Dondi, M, Martelli, C, Bald, G (2010) Microwave-assisted polyol synthesis of Cu nanoparticles. J. Nanoparticle. Res. 13: pp. 127-138 CrossRef
    48. Tang, W, Peterson, AA, Varela, AS, Jovanov, Z, Bech, L, Durand, WJ, Dahl, S, Norskov, JK, Chorkendorff, I (2012) The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. Phys. Chem. Chem. Phys. 14: pp. 76-81 CrossRef
    49. Tomita, Y, Teruya, S, Koga, O, Hori, Y (2000) Electrochemical reduction of carbon dioxide at a platinum electrode in acetonitrile鈥搘ater mixtures. J. Electrochem. Soc. 147: pp. 4164 CrossRef
    50. Amatore, C, Saveant, JM (1981) Mechanism and kinetic characteristics of the electrochemical reduction of carbon dioxide in media of low proton availability. J. Am. Chem. Soc. 103: pp. 5021-5023 CrossRef
    51. Calder贸n, CA, Ojeda, C, Macagno, VA, Paredes-Olivera, P, Patrito, EM (2010) Interaction of oxidized copper surfaces with alkanethiols in organic and aqueous solvents. the mechanism of Cu2O reduction. J. Phys. Chem. C 114: pp. 3945-3957 CrossRef
  • 刊物主题:Materials Science, general; Renewable and Green Energy; Renewable and Green Energy;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2194-1467
文摘
Carbon dioxide (CO2) is one of the main gases produced by human activity and is responsible for the green house effect. Numerous routes for CO2 capture and reduction are currently under investigation. Another approach to mitigate the CO2 content in the atmosphere is to convert it into useful species such as hydrocarbon molecules that can be used for fuel. In this view, copper is one of the most interesting catalyst materials for CO2 reduction due to its remarkable ability to generate hydrocarbon fuels. However, its utilization as an effective catalyst for CO2 reduction is hampered by its oxidation and relatively high voltages. We have fabricated hybrid materials for CO2 reduction by combining the activity of copper and the conductivity of reduced graphene oxide (rGO). Cu nanoparticles (CuNPs) deposited on rGO have demonstrated higher current density and lower overpotential compared to other copper-based electrodes that we have tested. The CuNPs on rGO also exhibit better stability, preserving their catalytic activity without degradation for several hours.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.