Size-dependent generalized thermoelasticity model for Timoshenko microbeams
详细信息    查看全文
  • 作者:Ehsan Taati (1)
    Masoud Molaei Najafabadi (2)
    Hassan Basirat Tabrizi (2)
  • 刊名:Acta Mechanica
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:225
  • 期:7
  • 页码:1823-1842
  • 全文大小:1,327 KB
  • 参考文献:1. Pei J., Tian F., Thundat T.: Glucose biosensor based on the microcantilever. Anal. Chem. 76, 292-97 (2004) CrossRef
    2. McMahan, L.E., Castleman, B.W.: Characterization of vibrating beam sensors during shock and vibration. In: Record—IEEE PLANS, Position Location and Navigation Symposium, pp. 102-10, Monterey, CA, USA (2004)
    3. Lun F.Y., Zhang P., Gao F.B., Jia H.G.: Design and fabrication of micro-optomechanical vibration sensor. Microfabr. Technol. 120, 61-4 (2006)
    4. Yun W., Peilong D., Zhenying X., Hua Y., Jiangping W., Jingjing W.: A constitutive model for thin sheet metal in micro-forming considering first order size effects. Mater. Des. 31, 1010-014 (2010) CrossRef
    5. Fleck N.A., Muller G.M., Ashby M.F., Hutchinson J.W.: Strain gradient plasticity theory and experiment. Acta Metall. Mater. 42, 475-87 (1994) CrossRef
    6. Stolken J.S., Evans A.G.: Microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109-115 (1998) CrossRef
    7. Lam D.C.C., Chong A.C.M.: Indentation model and strain gradient plasticity law for glassy polymers. J. Mater. Res. 14, 3784-788 (1999) CrossRef
    8. Lam D.C.C., Yang F., Chong A.C.M., Wang J., Tong P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477-508 (2003) CrossRef
    9. McFarland A.W., Colton J.S.: Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 15, 1060-067 (2005) CrossRef
    10. Lakes, R.: Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. In: Mühlhaus, H.B. (Ed.) Continuum Models for Materials with Microstructure, pp. 1-5. Wiley, Chichester (1995)
    11. Chen C.P., Lakes R.S.: Dynamic wave dispersion and loss properties of conventional and negative Poisson’s ratio polymeric cellular materials. Cell. Polym. 8, 343-69 (1989)
    12. Mindlin R.D., Tiersten H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415-48 (1962) CrossRef
    13. Mindlin R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51-8 (1964) CrossRef
    14. Koiter W.T.: Couple-stresses in the theory of elasticity, I and II. Proc. K Ned Akad Wet B. 67, 17-4 (1964)
    15. Yang F., Chong A.C.M., Lam D.C.C., Tong P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731-743 (2002) CrossRef
    16. Maurer M.J, Thompson H.A.: Non-Fourier effects at high heat flux. J. Heat Transf. 95, 284-86 (1973) CrossRef
    17. Babaei M.H, Chen Z.T.: Hyperbolic heat conduction in a functionally graded hollow sphere. Int. J. Thermophys. 29, 1457-469 (2008) CrossRef
    18. Papargyri-Beskou S., Polyzos D., Beskos D.E.: Dynamic analysis of gradient elastic flexural beams. Struct. Eng. Mech. 15, 705-16 (2003) CrossRef
    19. Papargyri-Beskou S., Beskos D.E.: Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates. Arch. Appl. Mech. 78, 625-35 (2008) CrossRef
    20. Papargyri-Beskou S., Polyzos D., Beskos D.E.: Wave dispersion in gradient elastic solids and structures: a unified treatment. Int. J. Solids Struct. 46, 3751-759 (2009) CrossRef
    21. Papargyri-Beskou S., Giannakopoulos A.E., Beskos D.E.: Variational analysis of gradient elastic flexural plates under static loading. Int. J. Solids Struct. 47, 2755-766 (2010) CrossRef
    22. Park S.K., Gao X.L.: Bernoulli–Euler beam model based on a modified couple stress theory. Micromech. Microeng. 16, 2355-359 (2006) CrossRef
    23. Ma H.M., Gao X.L., Reddy J.N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids. 56, 3379-391 (2008) CrossRef
    24. Kong S., Zhou S., Nie Z., Wang K.: The size-dependent natural frequency of Bernoulli–Euler micro-beams. Int. J. Eng. Sci. 46, 427-37 (2008) CrossRef
    25. Cheng S.H., Feng B.: Size effect in micro-scale cantilever beam bending. Acta Mech. 219, 291-07 (2011) CrossRef
    26. Ma H.M., Gao X.L., Reddy J.N.: A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech. 220, 217-35 (2011) CrossRef
    27. Gao, X.L., Huang, J.X., Reddy, J.N.: A non-classical third-order shear deformation plate model based on a modified couple stress theory. Acta Mech (2013). doi:10.1007/s00707-013-0880-8
    28. Landau L.D., Lifshitz E.M.: Theory of Elasticity. Pergamon Press, Oxford (1959)
    29. Manolis G.D., Beskos D.E.: Thermally induced vibrations of beam structures. Comput. Meth. Appl. Mech. Eng. 21, 337-55 (1980) CrossRef
    30. Massalas C.V., Kalpakidis V.K.: Coupled thermoelastic vibration of a simply supported beam. J. Sound Vib. 88, 425-29 (1983) CrossRef
    31. Massalas C.V., Kalpakidis V.K.: Coupled thermoelastic vibration of a Timoshenko beam. Lett. Appl. Eng. Sci. 22, 459-65 (1984)
    32. Givoli D., Rand O.: Dynamic thermoelastic coupling effects in a rod. AIAA J. 33, 776-78 (1995) CrossRef
    33. Lifshitz R., Roukes M.L.: Thermoelastic damping in micro- and nanomechanical systems. Phys. Rev. B. 61, 5600-609 (2000) CrossRef
    34. Rezazadeh G., Saeedivahdat A., Pesteii S.M., Farzi B.: Study of thermoelastic damping in capacitive micro-beam resonators using hyperbolic heat conduction model. Sens. Transducers J. 108, 54-2 (2009)
    35. Vahdat A.S., Rezazadeh G.: Effects of axial and residual stresses on thermoelastic damping in capacitive micro-beam resonator. J. Franklin Inst. 348, 622-39 (2011) CrossRef
    36. Guo F.L., Rogerson G.A.: Thermoelastic coupling effect on a micro-machined beam machined beam resonator. Mech. Res. Commun. 30, 513-18 (2003) CrossRef
    37. Sun Y., Fang D., Soh A.K.: Thermoelastic damping in micro-beam resonators. Int. J. Solids Struct. 43, 3213-229 (2006) CrossRef
    38. Rezazadeh G., Vahdat A., Tayefeh-rezaei S., Cetinkaya C.: Thermoelastic damping in a micro-beam resonator using modified couple stress theory. Acta Mech. 223, 1137-152 (2012) CrossRef
    39. Duwel A., Gorman J., Weinstein M., Borenstein J., Ward P.: Experimental study of thermoelastic damping in MEMS. Gyros Sens. Actuator A 103, 70-5 (2003) CrossRef
    40. Lopez Molina J.A., Rivera M.J., Trujillo M., Berjano E.J.: Thermal modeling for pulsed radiofrequency ablation: analytical study based on hyperbolic heat conduction. Med. Phys. 36, 1112-119 (2009) CrossRef
    41. Shih T.C., Kou H.S., Liauh C.T., Lin W.L.: The impact of thermal wave characteristics on thermal dose distribution during thermal therapy: a numerical study. Med. Phys. 32, 3029-036 (2005) CrossRef
  • 作者单位:Ehsan Taati (1)
    Masoud Molaei Najafabadi (2)
    Hassan Basirat Tabrizi (2)

    1. Mechanical Engineering Department, Sharif University of Technology, Azadi Ave., Tehran, Iran
    2. Thermoelasticity Center of Excellence, Mechanical Engineering Department, Amirkabir University of Technology, No. 424, Hafez Ave., PO Box 15875-4413, Tehran, Iran
  • ISSN:1619-6937
文摘
A size-dependent, explicit formulation for coupled thermoelasticity addressing a Timoshenko microbeam is derived in this study. This novel model combines modified couple stresses and non-Fourier heat conduction to capture size effects in the microscale. To this purpose, a length-scale parameter as square root of the ratio of curvature modulus to shear modulus and a thermal relaxation time as the phase lag of heat flux vector are considered for predicting the thermomechanical behavior in a microscale device accurately. Governing equations and boundary conditions of motion are obtained simultaneously through variational formulation based on Hamilton’s principle. As for case study, the model is utilized for simply supported microbeams subjected to a constant impulsive force per unit length. A comparison of the results with those obtained by the classical elasticity and Fourier heat conduction theories is carried out. Findings indicate that simultaneous considering the length-scale parameter and thermal relaxation time has strong influence on the thermoelastic behavior of microbeams. In dynamic thermoelastic analysis of the microbeam, while the non-Fourier heat conduction model is employed, the modified couple stress theory predicts larger deflection compared with the classical theory.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.