Inferring protein–protein interaction complexes from immunoprecipitation data
详细信息    查看全文
  • 作者:Joachim Kutzera (1) (2)
    Huub CJ Hoefsloot (1) (2)
    Anna Malovannaya (4)
    August B Smit (2) (3)
    Iven Van Mechelen (5)
    Age K Smilde (1) (2)
  • 关键词:Protein–protein interactions ; Proteomics ; Protein complexes ; Immunoprecipitation
  • 刊名:BMC Research Notes
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:6
  • 期:1
  • 全文大小:495 KB
  • 参考文献:1. Alberts B: The cell as a collection overview of protein machines Preparing the next generation of molecular biologists. / Cell 1998, 92:291-94. CrossRef
    2. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P: / Molecular Biology of the Cell 5E. 5 edition. New York: Garland Science; 2008.
    3. Gavin A, B?sche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick J, Michon A, Cruciat C, / et al.: Functional organization of the yeast proteome by systematic analysis of protein complexes. / Nature 2002,415(6868):141-47. CrossRef
    4. Drewes G, Bouwmeester T: Global approaches to protein–protein interactions. / Curr Opin Cell Biol 2003,15(2):199-05. CrossRef
    5. Gentleman R, Huber W: Making the most of high-throughput protein-interaction data. / Genome Biol 2007,8(10):112. CrossRef
    6. Bensimon A, Heck A, Aebersold R: Mass spectrometry-based proteomics and network biology. / Ann Rev Biochem 2012, 81:379-05. CrossRef
    7. Bauer A, Kuster B: Affinity purification-mass spectrometry. / Eur J Biochem 2003, 4:570-78. CrossRef
    8. Krogan N, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis A, / et al.: Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. / Nature 2006,440(7084):637-43. CrossRef
    9. Kim E, Sabharwal A, Vetta A, Blanchette M, / et al.: Predicting direct protein interactions from affinity purification mass spectrometry data. / Algorithms Mol Biol 2010, 5:34. CrossRef
    10. Collins S, Kemmeren P, Zhao X, Greenblatt J, Spencer F, Holstege F, Weissman J, Krogan N: Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. / Mol Cell Proteomics 2007,6(3):439-50. CrossRef
    11. Xie Z, Kwoh C, Li X, Wu M: Construction of co-complex score matrix for protein complex prediction from AP-MS data. / Bioinformatics 2011,27(13):i159-i166. CrossRef
    12. Moschopoulos C, Pavlopoulos G, Iacucci E, Aerts J, Likothanassis S, Schneider R, Kossida S: Which clustering algorithm is better for predicting protein complexes? / BMC Res Notes 2011, 4:549. CrossRef
    13. Sardiu M, Cai Y, Jin J, Swanson S, Conaway R, Conaway J, Florens L, Washburn M: Probabilistic assembly of human protein interaction networks from label-free quantitative proteomics. / Proc Natl Acad Sci 2008,105(5):1454-459. CrossRef
    14. Sardiu M, Florens L, Washburn M: Evaluation of clustering algorithms for protein complex and protein interaction network assembly. / J Proteome Res 2009,8(6):2944-952. CrossRef
    15. Choi H, Kim S, Gingras A, Nesvizhskii A: Analysis of protein complexes through model-based biclustering of label-free quantitative AP-MS data. / Mol Syst Biol 2010, 6:385. CrossRef
    16. Stukalov A, Superti-Furga G, Colinge J: Deconvolution of targeted protein–protein interaction maps. / J Proteome Res 2012,11(8):4102-109. CrossRef
    17. Malovannaya A, Li Y, Bulynko Y, Jung S, Wang Y, Lanz R, O’Malley B, Qin J: Streamlined analysis schema for high-throughput identification of endogenous protein complexes. / Proc Natl Acad Sci 2010,107(6):2431-436. CrossRef
    18. Malovannaya A, Lanz R, Jung S, Bulynko Y, Le N, Chan D, Ding C, Shi Y, Yucer N, Krenciute G, / et al.: Analysis of the human endogenous coregulator complexome. / Cell 2011,145(5):787-99. CrossRef
    19. Baillat D, Hakimi M, N??r A, Shilatifard A, Cooch N, Shiekhattar R: Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II. / Cell 2005,123(2):265-76. CrossRef
    20. Conaway R, Sato S, Tomomori-Sato C, Yao T, Conaway J, / et al.: The mammalian Mediator complex and its role in transcriptional regulation. / Trends Biochem Sci 2005,30(5):250-55. CrossRef
    21. Taatjes D: The human Mediator complex: a versatile, genome-wide regulator of transcription. / Trends Biochem Sci 2010,35(6):315-22. CrossRef
    22. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, / et al.: The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. / Nucleic Acids Res 2011,39(suppl 1):D561-D568. CrossRef
    23. Chua J, Kindler S, Boyken J, Jahn R: The architecture of an excitatory synapse. / J Cell Sci 2010,123(6):819-23. CrossRef
    24. Li M, Wang J, Chen J: A fast agglomerate algorithm for mining functional modules in protein interaction networks. In / BioMedical Engineering and Informatics, 2008. BMEI 2008. International Conference on, Volume 1.. IEEE; 2008:3-.
    25. Rodgers J, Nicewander W: Thirteen ways to look at the correlation coefficient. / Am Stat 1988, 42:59-6. CrossRef
    26. Jaccard P: étude comparative de la distribution florale dans une portion des Alpes et des Jura. / Bulletin de la Société Vaudoise des Sciences Naturelles 1901, 37:547-79.
    27. Brohée S, van Helden J: Evaluation of clustering algorithms for protein-protein interaction networks. / BMC Bioinformatics 2006, 7:488. CrossRef
  • 作者单位:Joachim Kutzera (1) (2)
    Huub CJ Hoefsloot (1) (2)
    Anna Malovannaya (4)
    August B Smit (2) (3)
    Iven Van Mechelen (5)
    Age K Smilde (1) (2)

    1. Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
    2. Netherlands Institute for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands
    4. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
    3. Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, The Netherlands
    5. Faculty of Psychology and Educational Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
  • ISSN:1756-0500
文摘
Background Protein–protein interactions in cells are widely explored using small–scale experiments. However, the search for protein complexes and their interactions in data from high throughput experiments such as immunoprecipitation is still a challenge. We present "4N", a novel method for detecting protein complexes in such data. Our method is a heuristic algorithm based on Near Neighbor Network (3N) clustering. It is written in R, it is faster than model-based methods, and has only a small number of tuning parameters. We explain the application of our new method to real immunoprecipitation results and two artificial datasets. We show that the method can infer protein complexes from protein immunoprecipitation datasets of different densities and sizes. Findings 4N was applied on the immunoprecipitation dataset that was presented by the authors of the original 3N in Cell 145:787-99, 2011. The test with our method shows that it can reproduce the original clustering results with fewer manually adapted parameters and, in addition, gives direct insight into the complex–complex interactions. We also tested 4N on the human "Tip49a/b" dataset. We conclude that 4N can handle the contaminants and can correctly infer complexes from this very dense dataset. Further tests were performed on two artificial datasets of different sizes. We proved that the method predicts the reference complexes in the two artificial datasets with high accuracy, even when the number of samples is reduced. Conclusions 4N has been implemented in R. We provide the sourcecode of 4N and a user-friendly toolbox including two example calculations. Biologists can use this 4N-toolbox even if they have a limited knowledge of R. There are only a few tuning parameters to set, and each of these parameters has a biological interpretation. The run times for medium scale datasets are in the order of minutes on a standard desktop PC. Large datasets can typically be analyzed within a few hours.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.