In vitro biomechanical study of femoral torsion disorders: effect on tibial proximal epiphyseal cancellous bone deformation
详细信息    查看全文
  • 作者:Stéphane Sobczak (1) (4)
    Bruno Baillon (3)
    Véronique Feipel (2)
    Serge Van Sint Jan (1)
    Patrick Salvia (1)
    Marcel Rooze (1) (2) (3)
  • 关键词:Femoral torsion ; Tibial torsion ; Femoral osteotomy ; Proximal tibial cancellous bone deformation ; Knee osteoarthritis
  • 刊名:Surgical and Radiologic Anatomy
  • 出版年:2011
  • 出版时间:July 2011
  • 年:2011
  • 卷:33
  • 期:5
  • 页码:439-449
  • 全文大小:743KB
  • 参考文献:1. Amis AA, Oguz C, Bull AMJ et al (2008) The effect of trochleoplasty on patellar stability and kinematics: a biomechanical study in vitro. J Bone Joint Surg Br 90:864-69 CrossRef
    2. Baillon B, Salvia P, Feipel V et al (2006) Changes in knee kinematics and quadriceps and hamstrings moment arms after high valgus and varus tibial “dome-osteotomy: An in vitro study. Rev Chir Orthop Reparatrice Appar Mot 92:464-72
    3. Bedson J, Jordan K, Croft P (2005) The prevalence and history of knee osteoarthritis in general practice: a case–control study. Fam Pract 22:103-08 CrossRef
    4. Bull AMJ, Berkshire FH, Amis AA (1998) Accuracy of an electromagnetic measurement device and application to the measurement and description of knee joint motion. Proc Inst Mech Eng Part H 212:347-55 CrossRef
    5. Brown TD, Shaw DT (1984) In vitro contact stress distribution on the femoral condyles. J Orthop Res 2:190-99 CrossRef
    6. Coventry MB (1973) Osteotomy about the knee for degenerative and rheumatoid arthritis. J Bone Joint Surg Am 55:23-8
    7. Coventry MB (1987) Proximal tibial varus osteotomy for osteoarthritis of the lateral compartment of the knee. J Bone Joint Surg Am 69:32-8
    8. Dejour H (1991) Histoire naturelle de l’arthrose fémoro-tibiale. 7th conference proceedings of the journées Lyonnaises de chirurgie du genou: les gonarthroses 97-14
    9. Ding M, Dalstra M, Danielsen CC et al (1997) Age variations in the properties of human tibial trabecular bone. J Bone Joint Surg Br 79:995-002 CrossRef
    10. Duparc F, Thomine JF, Simonet J et al (1992) Femoral and tibial bone torsions associated with internal femoro-tibial osteoarthritis. Index of cumulative torsions. Rev Chir Orthop Reparatrice Appar Mot 78:430-37
    11. Fukubayashi T, Kurosawa H (1980) The contact area and pressure distribution pattern of the knee. A study of normal and osteoarthrotic knee joints. Acta Orthop Scand 51:871-79 CrossRef
    12. Eckhoff DG (1994) Effect of limb malrotation on malalignment and osteoarthritis. Orthop Clin North Am 25:405-15
    13. Gold GE, Besier TF, Draper CE et al (2004) Weight-bearing MRI of patellofemoral joint cartilage contact area. J Magn Reson Imaging 20:526-30 CrossRef
    14. Goldblatt JP, Richmond JC (2003) Anatomy and biomechanics of the knee. Oper Tech Sports Med 11:172-86 CrossRef
    15. Goldstein SA, Wilson DL, Sonstegard DA et al (1983) The mechanical properties of human tibial trabecular bone as a function of metaphyseal location. J Biomech 16:965-69 CrossRef
    16. Goutallier D, Garabedian JM, Allain J et al (1997) Effect of osseous torsions of the lower limb on the development of lateral femorotibial knee arthrosis. Rev Chir Orthop Reparatrice Appar Mot 83:613-21
    17. Goutallier D, Hernigou P, Lenoble E et al (1988) Treatment of lax arthrotic genu valgum using Debeyre’s unicondylar osteotomy. A radioclinical study of 55 knees operated on more than 5?years ago. Rev Chir Orthop Reparatrice Appar Mot 74:753-63
    18. Goutallier D, Hernigou P, Medevielle D et al (1986) Outcome at more than 10?years of 93 tibial osteotomies for internal arthritis in genu varum. Rev Chir Orthop Reparatrice Appar Mot 72:101-13
    19. Gugenheim JJ, Probe RA, Brinker MR (2004) The effects of femoral shaft malrotation on lower extremity anatomy. J Orthop Trauma 18:658-64 CrossRef
    20. Healy WL, Anglen JO, Wasilewski SA et al (1988) Distal femoral varus osteotomy. J Bone Joint Surg Am 70:102-09
    21. Heino BJ, Powers CM, Terk MR et al (2003) Quantification of patellofemoral joint contact area using magnetic resonance imaging. Magn Reson Imaging 21:955-59 CrossRef
    22. Inaba H, Arai M (1989) Technical note: A method for measuring contact pressures instantaneously in articular joints. J Biomech 22:1293-296
    23. Insall JN, Joseph DM, Msika C (1984) High tibial osteotomy for varus gonarthrosis. A long-term follow-up study. J Bone Joint Surg Am 66:1040-048
    24. Jackson JP (1958) Osteotomy for osteoarthritis of the knee. J Bone Joint Surg Br 40:826-27
    25. Jackson JP, Waugh W (1961) Tibial osteotomy for osteoarthritis of the knee. J Bone Joint Surg Br 43:746-51
    26. Jiang CC, Insall JN (1989) Effect of rotation on the axial alignment of the femur. Clin Orthop 248:50-6
    27. Kettelkamp DB, Jacobs AW (1972) Tibiofemoral contact area-determination and implications. J Bone Joint Surg Am 54:349-56
    28. Klein Horsman MD, Koopman H, Van Der Helm F et al (2007) Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity. Clin Biomech 22:239-47 CrossRef
    29. Khodadadyan-Klostermann C, Von Seebach M, Taylor W et al (2004) Distribution of bone mineral density with age and gender in the proximal tibia. Clin Biomech 19:370-76 CrossRef
    30. Krause WR, Pope MH, Johnson RJ et al (1976) Mechanical changes in the knee after meniscectomy. J Bone Joint Surg Am 58:599-04
    31. Matricali GA, Bartels W, Labey L et al (2009) High inter-specimen variability of baseline data for the tibio-talar contact area. Clin Biomech 24:117-20 CrossRef
    32. Maquet P, Van De Berg A, Simonet J (1976) The weight-bearing surfaces of the femoro-tibial joint. Acta Orthop Belg 42:139-43
    33. Maquet P (1985) The treatment of choice in osteoarthritis of the knee. Clin Orthop Relat Res 192:108-12
    34. Marin Morales LA, Gomez Navalon LA, Zorrilla RP et al (2000) Treatment of osteoarthritis of the knee with valgus deformity by means of varus osteotomy. Acta Orthop Belg 66:272-78
    35. Moussa M (1994) Rotational malalignment and femoral torsion in osteoarthritic knees with patellofemoral joint involvement. Clin Orthop 304:176-83
    36. Riegger-Krugh C, Gerhart TN, Powers WR et al (1998) Tibial femoral contact pressures in degenerative joint disease. Clin Orthop 348:233-45
    37. Pendleton A, Arden N, Dougados M et al (2000) EULAR recommendations for the management of knee osteoarthritis: report of a task force of the Standing Committee for International Clinical Studies Including Therapeutic Trials (ESCISIT). Ann Rheum Dis 59:936-44 CrossRef
    38. Phan CM, Link TM, Blumenkrantz G et al (2006) MR imaging findings in the follow-up of patients with different stages of knee osteoarthritis and the correlation with clinical symptoms. Eur Radiol 16:608-18 CrossRef
    39. Salvia P (2004) Développement et application de l’électrogoniométrie tridimensionnelle à l’étude expérimentale et clinique de la cinématique articulaire, Ph. D. thesis. Université Libre de Bruxelles, Bruxelles
    40. Shoji H, Insall J (1973) High tibial osteotomy for osteoarthritis of the knee with valgus deformity. J Bone Joint Surg Am 55:963-73
    41. Sholukha V, Salvia P, Hilal I et al (2004) Calibration and validation of 6 DOFs instrumented spatial linkage for biomechanics applications. A practical approach. Med Eng Phys 26:251-60 CrossRef
    42. Taddei F, Cristofolini L, Martelli S et al (2006) Subject-specific finite element models of long bones: an in vitro evaluation of the overall accuracy. J Biomech 39:2457-467 CrossRef
    43. Takai S, Sakakida K, Yamashita F et al (1985) Rotational alignment of the lower limb in osteoarthritis of the knee. Int Orthop 9:209-16 CrossRef
    44. Yagi T, Sasaki T (1986) Tibial torsion in patients with medial-type osteoarthritic knee. Clin Orthop 213:177-82
    45. Yagi T (1994) Tibial torsion in patients in medical-type osteoarthritic knees. Clin Orthop 302:52-6
    46. Walker PS, Hajek JV (1972) The load-bearing area in the knee joint. J Biomech 5:581-89 CrossRef
    47. Walker PS, Erkman MJ (1975) The role of the menisci in force transmission across the knee. Clin Orthop 109:184-92 CrossRef
    48. Wretenberg P, Ramsey DK, Németh G (2002) Tibiofemoral contact points relative to flexion angle measured with MRI. Clin Biomech 17:477-85 CrossRef
  • 作者单位:Stéphane Sobczak (1) (4)
    Bruno Baillon (3)
    Véronique Feipel (2)
    Serge Van Sint Jan (1)
    Patrick Salvia (1)
    Marcel Rooze (1) (2) (3)

    1. Laboratory of Anatomy, Biomechanics and Organogenesis (LABO), Faculté de Médicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
    4. Laboratory of Anatomy, Biomechanics and Organogenesis (CP 619), Université Libre de Bruxelles (ULB), route de Lennik 808, 1070, Brussels, Belgium
    3. Department of Orthopedics and Traumatology Surgery, Cliniques Universitaires de Bruxelles, H?pital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
    2. Laboratory for Functional Anatomy, Faculté des Sciences de la Motricité, Université Libre de Bruxelles (ULB), Brussels, Belgium
文摘
Purpose Osteoarthritis (OA) of the knee is a degenerative disease mainly found in elderly population. Valgus deformity seems to be directly related to lateralised gonarthrosis. Contradictory outcomes of surgical series are published in the literature and report satisfactory and unsatisfactory long-term results. Lower limb torsions disorders have been considered as being another factor inducing gonarthrosis. This paper presents an in vitro study aiming at quantifying the relationships between experimental femoral torsion disorders (medial and lateral) and the deformation of the cancellous bone of the proximal tibial epiphysis (CBTPE). Methods Five left fresh-frozen lower limbs were used. Specimens were mounted on an experimental jig and muscles were loaded. Six measurement elements, including strain gages, were introduced into CBTPE to measure relative deformation. Experimental osteotomy control was performed using a specially devised system allowing various amplitudes of medial and lateral torsion. CBTPE deformations were measured during knee flexion movement. Results Intra-observer reproducibility of CBTPE deformations showed a mean coefficient of multiple correlation of 0.93 and a mean coefficient of variation of 9% for flexion. Intra-specimen repeatability showed a mean RMS difference ranging from 7 to 10% and a mean ICC of 0.98. CBTPE deformations were significantly influenced by femoral torsion disorder conditions and range-of-motion (ROM) for most measurement elements. No interaction between torsion condition and ROM was observed. Globally, CBTPE deformation in the lateral compartment increased during experimental lateral torsion disorder simulation and decreased during medial torsion simulation. The opposite behaviour was observed in the medial compartment. The decrease and/or increase were not always proportional to the degree of femoral torsional disorder simulated. Conclusion Experimental results from this study do not fully agree with previously published clinical observations on the femoral torsion disorder. The present quantified results do not support that medial femoral torsion disorder induces an increased lateral tibial deformation, which could be linked to gonarthrosis observed in this compartment. In summary, our results showed that medial and lateral femoral torsion disorder conditions applied in normally aligned lower limb induced a deformation increase in the medial and in the lateral compartment, respectively.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.