New horizons in tumor microenvironment biology: challenges and opportunities
详细信息    查看全文
  • 作者:Fei Chen (1)
    Xueqian Zhuang (1)
    Liangyu Lin (1)
    Pengfei Yu (1)
    Ying Wang (1)
    Yufang Shi (1) (2)
    Guohong Hu (1)
    Yu Sun (1) (3) (4) (5)

    1. Key Laboratory of Stem Cell Biology
    ; Institute of Health Sciences ; Shanghai Institutes for Biological Sciences ; Chinese Academy of Sciences/Shanghai Jiaotong University School of Medicine ; Shanghai ; 200031 ; China
    2. Soochow Institutes for Translational Medicine
    ; Soochow University ; Suzhou ; 215123 ; China
    3. VA Seattle Medical Center
    ; Seattle ; WA ; 98108 ; USA
    4. Department of Medicine
    ; University of Washington ; Seattle ; WA ; 98195 ; USA
    5. Institute of Health Sciences
    ; Shanghai Institutes for Biological Sciences (SIBS) ; Chinese Academy of Sciences (CAS) and Shanghai Jiaotong University School of Medicine (SJTUSM) ; 320 Yue Yang Road ; Biological Research Building A ; Shanghai ; 200031 ; China
  • 关键词:Acquired resistance ; Clinical oncology ; Combination therapy ; Distant metastasis ; Immunomodulation ; Targeting strategy ; Therapeutic intervention ; Translational medicine ; Tumor microenvironment
  • 刊名:BMC Medicine
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:13
  • 期:1
  • 全文大小:2,322 KB
  • 参考文献:1. Joyce, JA (2005) Therapeutic targeting of the tumor microenvironment. Cancer Cell 7: pp. 513-20 CrossRef
    2. Carreira, S, Romanel, A, Goodall, J, Grist, E, Ferraldeschi, R, Miranda, S (2014) Tumor clone dynamics in lethal prostate cancer. Sci Transl Med 6: pp. 254ra125 CrossRef
    3. Marusyk, A, Tabassum, DP, Altrock, PM, Almendro, V, Michor, F, Polyak, K (2014) Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. Nature 514: pp. 54-8 CrossRef
    4. Mroue, R, Bissell, MJ (2013) Three-dimensional cultures of mouse mammary epithelial cells. Methods Mol Biol 945: pp. 221-50 CrossRef
    5. Chen, F, Qi, X, Qian, M, Dai, Y, Sun, Y (2014) Tackling the tumor microenvironment: what challenge does it pose to anticancer therapies?. Protein Cell 5: pp. 816-26 CrossRef
    6. Junttila, MR, Sauvage, FJ (2013) Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501: pp. 346-54 CrossRef
    7. Meric-Bernstam, F, Mills, GB (2012) Overcoming implementation challenges of personalized cancer therapy. Nat Rev Clin Oncol 9: pp. 542-8 CrossRef
    8. Ozdemir, BC, Pentcheva-Hoang, T, Carstens, JL, Zheng, X, Wu, CC, Simpson, TR (2014) Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25: pp. 719-34 CrossRef
    9. Rhim, AD, Oberstein, PE, Thomas, DH, Mirek, ET, Palermo, CF, Sastra, SA (2014) Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25: pp. 735-47 CrossRef
    10. Dittmer J, Leyh B. The impact of tumor stroma on drug response in breast cancer. Semin Cancer Biol. 2014. [Ahead of print.]
    11. Valencia, T, Kim, JY, Abu-Baker, S, Moscat-Pardos, J, Ahn, CS, Reina-Campos, M (2014) Metabolic reprogramming of stromal fibroblasts through p62-mTORC1 signaling promotes inflammation and tumorigenesis. Cancer Cell 26: pp. 121-35 CrossRef
    12. Scherz-Shouval, R, Santagata, S, Mendillo, ML, Sholl, LM, Ben-Aharon, I, Beck, AH (2014) The reprogramming of tumor stroma by HSF1 is a potent enabler of malignancy. Cell 158: pp. 564-78 CrossRef
    13. Feig, C, Jones, JO, Kraman, M, Wells, RJ, Deonarine, A, Chan, DS (2013) Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A 110: pp. 20212-7 CrossRef
    14. Torres, S, Bartolome, RA, Mendes, M, Barderas, R, Fernandez-Acenero, MJ, Pelaez-Garcia, A (2013) Proteome profiling of cancer-associated fibroblasts identifies novel proinflammatory signatures and prognostic markers for colorectal cancer. Clin Cancer Res 19: pp. 6006-19 CrossRef
    15. Rupp C, Scherzer M, Rudisch A, Unger C, Haslinger C, Schweifer N, et al. IGFBP7, a novel tumor stroma marker, with growth-promoting effects in colon cancer through a paracrine tumor-stroma interaction. Oncogene. 2014. [Ahead of print.]
    16. Birnie, R, Bryce, SD, Roome, C, Dussupt, V, Droop, A, Lang, SH (2008) Gene expression profiling of human prostate cancer stem cells reveals a pro-inflammatory phenotype and the importance of extracellular matrix interactions. Genome Biol 9: pp. R83 CrossRef
    17. Fridman, WH, Pages, F, Sautes-Fridman, C, Galon, J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12: pp. 298-306 CrossRef
    18. Pardoll, DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12: pp. 252-64 CrossRef
    19. Pylayeva-Gupta, Y, Lee, KE, Hajdu, CH, Miller, G, Bar-Sagi, D (2012) Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 21: pp. 836-47 CrossRef
    20. Bayne, LJ, Beatty, GL, Jhala, N, Clark, CE, Rhim, AD, Stanger, BZ (2012) Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21: pp. 822-35 CrossRef
    21. Motz, GT, Coukos, G (2011) The parallel lives of angiogenesis and immunosuppression: cancer and other tales. Nat Rev Immunol 11: pp. 702-11 CrossRef
    22. Visser, KE, Korets, LV, Coussens, LM (2005) De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7: pp. 411-23 CrossRef
    23. Noy, R, Pollard, JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41: pp. 49-61 CrossRef
    24. Memarzadeh, S, Xin, L, Mulholland, DJ, Mansukhani, A, Wu, H, Teitell, MA (2007) Enhanced paracrine FGF10 expression promotes formation of multifocal prostate adenocarcinoma and an increase in epithelial androgen receptor. Cancer Cell 12: pp. 572-85 CrossRef
    25. Bhowmick, NA, Chytil, A, Plieth, D, Gorska, AE, Dumont, N, Shappell, S (2004) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303: pp. 848-51 CrossRef
    26. Sun Y. Translational horizons in the tumor microenvironment: harnessing breakthroughs and targeting cures. Med Res Rev. 2015. [Ahead of print].
    27. Chong, CR, Janne, PA (2013) The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat Med 19: pp. 1389-400 CrossRef
    28. Corso, S, Giordano, S (2013) Cell-autonomous and non-cell-autonomous mechanisms of HGF/MET-driven resistance to targeted therapies: from basic research to a clinical perspective. Cancer Discov 3: pp. 978-92 CrossRef
    29. McMillin, DW, Negri, JM, Mitsiades, CS (2013) The role of tumour-stromal interactions in modifying drug response: challenges and opportunities. Nat Rev Drug Discov 12: pp. 217-28 CrossRef
    30. Holohan, C, Schaeybroeck, S, Longley, DB, Johnston, PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13: pp. 714-26 CrossRef
    31. Wan, LL, Pantel, K, Kang, YB (2013) Tumor metastasis: moving new biological insights into the clinic. Nat Med 19: pp. 1450-64 CrossRef
    32. Eckstein, N, Servan, K, Hildebrandt, B, Politz, A, Jonquieres, G, Wolf-Kummeth, S (2009) Hyperactivation of the insulin-like growth factor receptor I signaling pathway is an essential event for cisplatin resistance of ovarian cancer cells. Cancer Res 69: pp. 2996-3003 CrossRef
    33. Williams, RT, Besten, W, Sherr, CJ (2007) Cytokine-dependent imatinib resistance in mouse BCR-ABL(+), Arf-null lymphoblastic leukemia. Gene Dev 21: pp. 2283-7 CrossRef
    34. Shree, T, Olson, OC, Elie, BT, Kester, JC, Garfall, AL, Simpson, K (2011) Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev 25: pp. 2465-79 CrossRef
    35. Visvader, JE, Lindeman, GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8: pp. 755-68 CrossRef
    36. Smith, MP, Sanchez-Laorden, B, O'Brien, K, Brunton, H, Ferguson, J, Young, H (2014) The immune microenvironment confers resistance to MAPK pathway inhibitors through macrophage-derived TNFalpha. Cancer Discov 4: pp. 1214-29 CrossRef
    37. Gilbert, LA, Hemann, MT (2010) DNA damage-mediated induction of a chemoresistant niche. Cell 143: pp. 355-66 CrossRef
    38. Sun, Y, Nelson, PS (2012) Molecular pathways: involving microenvironment damage responses in cancer therapy resistance. Clin Cancer Res 18: pp. 4019-25 CrossRef
    39. Sun, Y, Campisi, J, Higano, C, Beer, TM, Porter, P, Coleman, I (2012) Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med 18: pp. 1359-68 CrossRef
    40. Acharyya, S, Oskarsson, T, Vanharanta, S, Malladi, S, Kim, J, Morris, PG (2012) A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 150: pp. 165-78 CrossRef
    41. McMillin, DW, Delmore, J, Negri, J, Ooi, M, Klippel, S, Miduturu, CV (2011) Microenvironmental influence on pre-clinical activity of polo-like kinase inhibition in multiple myeloma: implications for clinical translation. PLoS One 6: pp. e20226 CrossRef
    42. Sun, XS, Guevara, N, Fakhry, N, Sun, SR, Marcy, PY, Santini, J (2013) Radiation therapy in thyroid cancer. Cancer Radiother 17: pp. 233-243 CrossRef
    43. Wilson, TR, Fridlyand, J, Yan, Y, Penuel, E, Burton, L, Chan, E (2012) Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 487: pp. 505-9 CrossRef
    44. Straussman, R, Morikawa, T, Shee, K, Barzily-Rokni, M, Qian, ZR, Du, J (2012) Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487: pp. 500-4 CrossRef
    45. Tefferi, A (2012) Challenges facing JAK inhibitor therapy for myeloproliferative neoplasms. N Engl J Med 366: pp. 844-6 CrossRef
    46. Azuma, K, Kawahara, A, Sonoda, K, Nakashima, K, Tashiro, K, Watari, K (2014) FGFR1 activation is an escape mechanism in human lung cancer cells resistant to afatinib, a pan-EGFR family kinase inhibitor. Oncotarget 5: pp. 5908-19
    47. Lee, JK, Joo, KM, Lee, J, Yoon, Y, Nam, DH (2014) Targeting the epithelial to mesenchymal transition in glioblastoma: the emerging role of MET signaling. Onco Targets Ther 7: pp. 1933-44
    48. Shostak, K, Zhang, X, Hubert, P, G枚ktuna, SI, Jiang, Z, Klevernic, I (2014) NF-魏B-induced KIAA1199 promotes survival through EGFR signalling. Nat Commun 5: pp. 5232 CrossRef
    49. Jung, YH, Kim, JK, Shiozawa, Y, Wang, JC, Mishra, A, Joseph, J (2013) Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat Commun 4: pp. 1795 CrossRef
    50. Rosano, L, Cianfrocca, R, Tocci, P, Spinella, F, Castro, V, Caprara, V (2014) Endothelin A receptor/Beta-arrestin signaling to the Wnt pathway renders ovarian cancer cells resistant to chemotherapy. Cancer Res 74: pp. 7453-64 CrossRef
    51. Jingushi K, Ueda Y, Kitae K, Hase H, Egawa H, Ohshio I, et al. miRNA-629 targets TRIM33 to promote TGF-beta/Smad signaling and metastatic phenotypes in ccRCC. Mol Cancer Res. 2014. [Ahead of print].
    52. Sui, H, Zhu, L, Deng, W, Li, Q (2014) Epithelial-mesenchymal transition and drug resistance: role, molecular mechanisms, and therapeutic strategies. Oncol Res Treat 37: pp. 584-9 CrossRef
    53. Duan, CW, Shi, J, Chen, J, Wang, B, Yu, YH, Qin, X (2014) Leukemia propagating cells rebuild an evolving niche in response to therapy. Cancer Cell 25: pp. 778-93 CrossRef
    54. Ding, L, Ley, TJ, Larson, DE, Miller, CA, Koboldt, DC, Welch, JS (2012) Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481: pp. 506-10 CrossRef
    55. Koh, BI, Kang, YB (2012) The pro-metastatic role of bone marrow-derived cells: a focus on MSCs and regulatory T cells. Embo Rep 13: pp. 412-22 CrossRef
    56. Leijten, J, Georgi, N, Moreira Teixeira, L, Blitterswijk, CA, Post, JN, Karperien, M (2014) Metabolic programming of mesenchymal stromal cells by oxygen tension directs chondrogenic cell fate. Proc Natl Acad Sci U S A 111: pp. 13954-9 CrossRef
    57. Maertens, L, Erpicum, C, Detry, B, Blacher, S, Lenoir, B, Carnet, O (2014) Bone marrow-derived mesenchymal stem cells drive lymphangiogenesis. PloS One 9: pp. e106976 CrossRef
    58. Wang, Y, Chen, X, Cao, W, Shi, Y (2014) Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol 15: pp. 1009-16 CrossRef
    59. Pacini, S (2014) Deterministic and stochastic approaches in the clinical application of mesenchymal stromal cells (MSCs). Front Cell Dev Biol 2: pp. 50
    60. Quante, M, Tu, SP, Tomita, H, Gonda, T, Wang, SS, Takashi, S (2011) Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 19: pp. 257-72 CrossRef
    61. Dwyer, RM, Potter-Beirne, SM, Harrington, KA, Lowery, AJ, Hennessy, E, Murphy, JM (2007) Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res 13: pp. 5020-7 CrossRef
    62. Suzuki, T, Kawamura, K, Li, Q, Okamoto, S, Tada, Y, Tatsumi, K (2014) Mesenchymal stem cells are efficiently transduced with adenoviruses bearing type 35-derived fibers and the transduced cells with the IL-28A gene produces cytotoxicity to lung carcinoma cells co-cultured. BMC Cancer 14: pp. 713 CrossRef
    63. Leng, L, Wang, Y, He, N, Wang, D, Zhao, Q, Feng, G (2014) Molecular imaging for assessment of mesenchymal stem cells mediated breast cancer therapy. Biomaterials 35: pp. 5162-70 CrossRef
    64. Serakinci, N, Christensen, R, Fahrioglu, U, Sorensen, FB, Dagaens-Hansen, F, Hajek, M (2011) Mesenchymal stem cells as therapeutic delivery vehicles targeting tumor stroma. Cancer Biother Radio 26: pp. 767-73 CrossRef
    65. Li, W, Ren, G, Huang, Y, Su, J, Han, Y, Li, J (2012) Mesenchymal stem cells: a double-edged sword in regulating immune responses. Cell Death Differ 19: pp. 1505-13 CrossRef
    66. Ren, GW, Zhao, X, Wang, Y, Zhang, X, Chen, XD, Xu, CL (2012) CCR2-dependent recruitment of macrophages by tumor-educated mesenchymal stromal cells promotes tumor development and is mimicked by TNF alpha. Cell Stem Cell 11: pp. 812-24 CrossRef
    67. Ren, GW, Zhang, LY, Zhao, X, Xu, GW, Zhang, YY, Roberts, AI (2008) Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2: pp. 141-50 CrossRef
    68. Han, X, Yang, Q, Lin, L, Xu, C, Zheng, C, Chen, X (2014) Interleukin-17 enhances immunosuppression by mesenchymal stem cells. Cell Death Differ 21: pp. 1758-68 CrossRef
    69. Huang, Y, Yu, P, Li, W, Ren, G, Roberts, AI, Cao, W (2014) p53 regulates mesenchymal stem cell-mediated tumor suppression in a tumor microenvironment through immune modulation. Oncogene 33: pp. 3830-8 CrossRef
    70. Ren, GW, Su, JJ, Zhang, LY, Zhao, X, Ling, WF, L'Huillie, A (2009) Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells 27: pp. 1954-62 CrossRef
    71. Ling, WF, Zhang, JM, Yuan, ZR, Ren, GW, Zhang, LY, Chen, XD (2014) Mesenchymal stem cells use IDO to regulate immunity in tumor microenvironment. Cancer Res 74: pp. 1576-87 CrossRef
    72. Peinado, H, Aleckovic, M, Lavotshkin, S, Matei, I, Costa-Silva, B, Moreno-Bueno, G (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18: pp. 883-91 CrossRef
    73. Roccaro, AM, Sacco, A, Maiso, P, Azab, AK, Tai, YT, Reagan, M (2013) BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J Clin Invest 123: pp. 1542-55 CrossRef
    74. Castells, M, Milhas, D, Gandy, C, Thibault, B, Rafii, A, Delord, JP (2013) Microenvironment mesenchymal cells protect ovarian cancer cell lines from apoptosis by inhibiting XIAP inactivation. Cell Death Dis 4: pp. e887 CrossRef
    75. Roodhart, JML, Daenen, LGM, Stigter, ECA, Prins, HJ, Gerrits, J, Houthuijzen, JM (2011) Mesenchymal stem cells induce resistance to chemotherapy through the release of platinum-induced fatty acids. Cancer Cell 20: pp. 370-83 CrossRef
    76. Selmani, Z, Naji, A, Zidi, I, Favier, B, Gaiffe, E, Obert, L (2008) Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4(+)CD25(high)FOXP3(+) regulatory T cells. Stem Cells 26: pp. 212-22 CrossRef
    77. Ianni, M, Papa, B, Ioanni, M, Moretti, L, Bonifacio, E, Cecchini, D (2008) Mesenchymal cells recruit and regulate T regulatory cells. Exp Hematol 36: pp. 309-18 CrossRef
    78. Valastyan, S, Weinberg, RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147: pp. 275-92 CrossRef
    79. Paget, S (1889) The distribution of secondary growths in cancer of the breast. Lancet 133: pp. 571-3 CrossRef
    80. Paget, S (1989) The distribution of secondary growths in cancer of the breast. 1889. Canc Metastasis Rev 8: pp. 98-101
    81. Bissell, M, Hines, WC (2011) Why don鈥檛 we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 17: pp. 320-9 CrossRef
    82. Augsten, M, Sjoberg, E, Frings, O, Vorrink, SU, Frijhoff, J, Olsson, E (2014) Cancer-associated fibroblasts expressing CXCL14 rely upon NOS1-derived nitric oxide signaling for their tumor-supporting properties. Cancer Res 74: pp. 2999-3010 CrossRef
    83. Kuo, PL, Huang, MS, Hung, JY, Chou, SH, Chiang, SY, Huang, YF (2014) Synergistic effect of lung tumor-associated dendritic cell-derived HB-EGF and CXCL5 on cancer progression. Int J Cancer 135: pp. 96-108 CrossRef
    84. Branco-Price, C, Zhang, N, Schnelle, M, Evans, C, Katschinski, DM, Liao, D (2012) Endothelial cell HIF-1 alpha and HIF-2 alpha differentially regulate metastatic success. Cancer Cell 21: pp. 52-65 CrossRef
    85. Sceneay, J, Chow, MT, Chen, A, Halse, HM, Wong, CSF, Andrews, DM (2012) Primary tumor hypoxia recruits CD11b(+)/Ly6C(med)/Ly6G(+) immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche. Cancer Res 72: pp. 3906-11 CrossRef
    86. Sonoshita, M, Aoki, M, Fuwa, H, Aoki, K, Hosogi, H, Sakai, Y (2011) Suppression of colon cancer metastasis by Aes through inhibition of notch signaling. Cancer Cell 19: pp. 125-37 CrossRef
    87. Reymond, N, Im, JH, Garg, R, Vega, FM, d'Agua, BB, Riou, P (2012) Cdc42 promotes transendothelial migration of cancer cells through beta 1 integrin. J Cell Biol 199: pp. 653-68 CrossRef
    88. Giampieri, S, Manning, C, Hooper, S, Jones, L, Hill, CS, Sahai, E (2009) Localized and reversible TGFbeta signalling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol 11: pp. 1287-96 CrossRef
    89. Psaila, B, Lyden, D (2009) The metastatic niche: adapting the foreign soil. Nat Rev Cancer 9: pp. 285-93 CrossRef
    90. Catena, R, Bhattacharya, N, Rayes, T, Wang, SM, Choi, H, Gao, DC (2013) Bone marrow-derived Gr1(+) cells can generate a metastasis-resistant microenvironment via induced secretion of thrombospondin-1. Cancer Discov 3: pp. 578-89 CrossRef
    91. Granot, Z, Henke, E, Comen, EA, King, TA, Norton, L, Benezra, R (2011) Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell 20: pp. 300-14 CrossRef
    92. Quail, DF, Joyce, JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19: pp. 1423-37 CrossRef
    93. Castano, Z, Marsh, T, Tadipatri, R, Kuznetsov, HS, Al-Shahrour, F, Paktinat, M (2013) Stromal EGF and IGF-I together modulate plasticity of disseminated triple-negative breast tumors. Cancer Discov 3: pp. 922-35 CrossRef
    94. Zhang, Y, Yang, PY, Wang, XF (2014) Microenvironmental regulation of cancer metastasis by miRNAs. Trends Cell Biol 24: pp. 153-60 CrossRef
    95. Kosaka, N, Iguchi, H, Hagiwara, K, Yoshioka, Y, Takeshita, F, Ochiya, T (2013) Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J Biol Chem 288: pp. 10849-59 CrossRef
    96. Yang, M, Chen, JQ, Su, F, Yu, B, Su, FX, Lin, L (2011) Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer 10: pp. 117 CrossRef
    97. Marusyk, A, Almendro, V, Polyak, K (2012) Intra-tumour heterogeneity: a looking glass for cancer?. Nat Rev Cancer 12: pp. 323-34 CrossRef
    98. Garraway, LA, Lander, ES (2013) Lessons from the cancer genome. Cell 153: pp. 17-37 CrossRef
    99. Fang, H, DeClerck, YA (2013) Targeting the tumor microenvironment: from understanding pathways to effective clinical trials. Cancer Res 73: pp. 4965-77 CrossRef
    100. Berlin, J, Bendell, JC, Hart, LL, Firdaus, I, Gore, I, Hermann, RC (2013) A randomized phase II trial of vismodegib versus placebo with FOLFOX or FOLFIRI and bevacizumab in patients with previously untreated metastatic colorectal cancer. Clin Cancer Res 19: pp. 258-67 CrossRef
    101. Kaye, SB, Fehrenbacher, L, Holloway, R, Amit, A, Karlan, B, Slomovitz, B (2012) A phase II, randomized, placebo-controlled study of vismodegib as maintenance therapy in patients with ovarian cancer in second or third complete remission. Clin Cancer Res 18: pp. 6509-18 CrossRef
    102. Alspach, E, Flanagan, KC, Luo, XM, Ruhland, MK, Huang, H, Pazolli, E (2014) p38MAPK plays a crucial role in stromal-mediated tumorigenesis. Cancer Discov 4: pp. 716-29 CrossRef
    103. Bellmunt, J, Pons, F, Orsola, A (2013) Molecular determinants of response to cisplatin-based neoadjuvant chemotherapy. Curr Opin Urol 23: pp. 466-71 CrossRef
    104. Tam V, Hooker CM, Molena D, Hulbert A, Lee B, Kleinberg L, et al. Clinical response to neoadjuvant therapy to predict success of adjuvant chemotherapy for esophageal adenocarcinoma. J Clin Oncol. 2014;32(Suppl 3; abstr 137).
  • 刊物主题:Medicine/Public Health, general; Biomedicine general;
  • 出版者:BioMed Central
  • ISSN:1741-7015
文摘
The tumor microenvironment (TME) is being increasingly recognized as a key factor in multiple stages of disease progression, particularly local resistance, immune-escaping, and distant metastasis, thereby substantially impacting the future development of frontline interventions in clinical oncology. An appropriate understanding of the TME promotes evaluation and selection of candidate agents to control malignancies at both the primary sites as well as the metastatic settings. This review presents a timely outline of research advances in TME biology and highlights the prospect of targeting the TME as a critical strategy to overcome acquired resistance, prevent metastasis, and improve therapeutic efficacy. As benign cells in TME niches actively modulate response of cancer cells to a broad range of standard chemotherapies and targeted agents, cancer-oriented therapeutics should be combined with TME-targeting treatments to achieve optimal clinical outcomes. Overall, a body of updated information is delivered to summarize recently emerging and rapidly progressing aspects of TME studies, and to provide a significant guideline for prospective development of personalized medicine, with the long term aim of providing a cure for cancer patients.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.