Serotonin transporter occupancy by escitalopram and citalopram in the non-human primate brain: a [11C]MADAM PET study
详细信息    查看全文
  • 作者:Sjoerd J. Finnema ; Christer Halldin ; Benny Bang-Andersen…
  • 关键词:Citalopram ; Non ; human primate ; Occupancy ; PET ; Serotonin ; Transporter
  • 刊名:Psychopharmacology
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:232
  • 期:21-22
  • 页码:4159-4167
  • 全文大小:2,163 KB
  • 参考文献:Adell A, Artigas F (1991) Differential effects of clomipramine given locally or systemically on extracellular 5-hydroxytryptamine in raphe nuclei and frontal cortex. An in vivo brain microdialysis study. Naunyn Schmiedeberg鈥檚 Arch Pharmacol 343:237鈥?44CrossRef
    Andree B, Nyberg S, Ito H, Ginovart N, Brunner F, Jaquet F, Halldin C, Farde L (1998) Positron emission tomographic analysis of dose-dependent MDL 100,907 binding to 5-hydroxytryptamine-2A receptors in the human brain. J Clin Psychopharmacol 18:317鈥?23CrossRef PubMed
    Artigas F (1993) 5-HT and antidepressants: new views from microdialysis studies. Trends Pharmacol Sci 14:262CrossRef PubMed
    Baldinger P, Kranz GS, Haeusler D, Savli M, Spies M, Philippe C, Hahn A, Hoflich A, Wadsak W, Mitterhauser M, Lanzenberger R, Kasper S (2014) Regional differences in SERT occupancy after acute and prolonged SSRI intake investigated by brain PET. Neuroimage 88:252鈥?62CrossRef PubMed
    Batis J, Barret O, Alagille D, Koren AO, Stehouwer JS, Cosgrove K, Goodman M, Seibyl J, Tamagnan G (2012) In vivo evaluation of [123I]mZIENT as a SPECT radioligand for the serotonin transporter. Nucl Med Biol 39:1137鈥?141CrossRef PubMed
    Bel N, Artigas F (1992) Fluvoxamine preferentially increases extracellular 5-hydroxytryptamine in the raphe nuclei: an in vivo microdialysis study. Eur J Pharmacol 229:101鈥?03CrossRef PubMed
    Catafau AM, Perez V, Plaza P, Pascual JC, Bullich S, Suarez M, Penengo MM, Corripio I, Puigdemont D, Danus M, Perich J, Alvarez E (2006) Serotonin transporter occupancy induced by paroxetine in patients with major depression disorder: a 123I-ADAM SPECT study. Psychopharmacology (Berlin) 189:145鈥?53CrossRef
    Chalon S, Tarkiainen J, Garreau L, Hall H, Emond P, Vercouillie J, Farde L, Dasse P, Varnas K, Besnard JC, Halldin C, Guilloteau D (2003) Pharmacological characterization of N,N-dimethyl-2-(2-amino-4-methylphenyl thio)benzylamine as a ligand of the serotonin transporter with high affinity and selectivity. J Pharmacol Exp Ther 304:81鈥?7CrossRef PubMed
    Cosgrove KP, Staley JK, Baldwin RM, Bois F, Plisson C, Al-Tikriti MS, Seibyl JP, Goodman MM, Tamagnan GD (2010) SPECT imaging with the serotonin transporter radiotracer [123I]p ZIENT in nonhuman primate brain. Nucl Med Biol 37:587鈥?91PubMed Central CrossRef PubMed
    Cosgrove KP, Kloczynski T, Nabulsi N, Weinzimmer D, Lin SF, Staley JK, Bhagwagar Z, Carson RE (2011) Assessing the sensitivity of [11C]p943, a novel 5-HT1B radioligand, to endogenous serotonin release. Synapse 65:1113鈥?117PubMed Central CrossRef PubMed
    Elfving B, Bjornholm B, Knudsen GM (2003) Interference of anaesthetics with radioligand binding in neuroreceptor studies. Eur J Nucl Med Mol Imaging 30:912鈥?15CrossRef PubMed
    Elfving B, Madsen J, Knudsen GM (2007) Neuroimaging of the serotonin reuptake site requires high-affinity ligands. Synapse 61:882鈥?88CrossRef PubMed
    Erichsen MN, Huynh TH, Abrahamsen B, Bastlund JF, Bundgaard C, Monrad O, Bekker-Jensen A, Nielsen CW, Frydenvang K, Jensen AA, Bunch L (2010) Structure-activity relationship study of first selective inhibitor of excitatory amino acid transporter subtype 1: 2-amino-4-(4-methoxyphenyl)-7-(naphthalen-1-yl)-5-oxo-5,6,7,8-tetrahydro-4H-chrom ene-3-carbonitrile (UCPH-101). J Med Chem 53:7180鈥?191CrossRef PubMed
    Farde L, Wiesel FA, Halldin C, Sedvall G (1988) Central D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs. Arch Gen Psychiatry 45:71鈥?6CrossRef PubMed
    Farde L, Wiesel FA, Nordstrom AL, Sedvall G (1989) D1- and D2-dopamine receptor occupancy during treatment with conventional and atypical neuroleptics. Psychopharmacology (Berlin) 99:S28鈥?1CrossRef
    Finnema SJ, Varrone A, Hwang TJ, Gulyas B, Pierson ME, Halldin C, Farde L (2010) Fenfluramine-induced serotonin release decreases [11C]AZ10419369 binding to 5-HT1B-receptors in the primate brain. Synapse 64:573鈥?77CrossRef PubMed
    Finnema SJ, Varrone A, Hwang TJ, Halldin C, Farde L (2012) Confirmation of fenfluramine effect on 5-HT1B receptor binding of [11C]AZ10419369 using an equilibrium approach. J Cereb Blood Flow Metab 32:685鈥?95PubMed Central CrossRef PubMed
    Garber JC, Barbee RW, Bielitzki JT, Clayton LA, Donovan JC, Hendriksen CFM, Kohn DF, Lipman NS, Locker PA, Melcher J, Quimby FW, Turner PV, Wood GA, Wurbel H (2011) Guide for the care and use of laboratory animals. The National Academies Press, Washington DC
    Halldin C, Lundberg J, Sovago J, Gulyas B, Guilloteau D, Vercouillie J, Emond P, Chalon S, Tarkiainen J, Hiltunen J, Farde L (2005) [11C]MADAM, a new serotonin transporter radioligand characterized in the monkey brain by PET. Synapse 58:173鈥?83CrossRef PubMed
    Herold N, Uebelhack K, Franke L, Amthauer H, Luedemann L, Bruhn H, Felix R, Uebelhack R, Plotkin M (2006) Imaging of serotonin transporters and its blockade by citalopram in patients with major depression using a novel SPECT ligand [123I]-ADAM. J Neural Transm 113:659鈥?70CrossRef PubMed
    Hinz R, Selvaraj S, Murthy NV, Bhagwagar Z, Taylor M, Cowen PJ, Grasby PM (2008) Effects of citalopram infusion on the serotonin transporter binding of [11C]DASB in healthy controls. J Cereb Blood Flow Metab 28:1478鈥?490CrossRef PubMed
    Invernizzi R, Belli S, Samanin R (1992) Citalopram鈥檚 ability to increase the extracellular concentrations of serotonin in the dorsal raphe prevents the drug鈥檚 effect in the frontal cortex. Brain Res 584:322鈥?24CrossRef PubMed
    Jorgensen TN, Christensen PM, Gether U (2014) Serotonin-induced down-regulation of cell surface serotonin transporter. Neurochem Int 73:107鈥?12CrossRef PubMed
    Karlsson P, Farde L, Halldin C, Swahn CG, Sedvall G, Foged C, Hansen KT, Skrumsager B (1993) PET examination of [11C]NNC 687 and [11C]NNC 756 as new radioligands for the D1-dopamine receptor. Psychopharmacology (Berlin) 113:149鈥?56CrossRef
    Kent JM, Coplan JD, Lombardo I, Hwang DR, Huang Y, Mawlawi O, Van Heertum RL, Slifstein M, Abi-Dargham A, Gorman JM, Laruelle M (2002) Occupancy of brain serotonin transporters during treatment with paroxetine in patients with social phobia: a positron emission tomography study with 11C McN 5652. Psychopharmacology (Berlin) 164:341鈥?48CrossRef
    Lammertsma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. Neuroimage 4:153鈥?58CrossRef PubMed
    Lanzenberger R, Kranz GS, Haeusler D, Akimova E, Savli M, Hahn A, Mitterhauser M, Spindelegger C, Philippe C, Fink M, Wadsak W, Karanikas G, Kasper S (2012) Prediction of SSRI treatment response in major depression based on serotonin transporter interplay between median raphe nucleus and projection areas. Neuroimage 63:874鈥?81CrossRef PubMed
    Lundberg J, Christophersen JS, Petersen KB, Loft H, Halldin C, Farde L (2007) PET measurement of serotonin transporter occupancy: a comparison of escitalopram and citalopram. Int J Neuropsychopharmacol 10:777鈥?85CrossRef PubMed
    Lundberg J, Tiger M, Landen M, Halldin C, Farde L (2012) Serotonin transporter occupancy with TCAs and SSRIs: a PET study in patients with major depressive disorder. Int J Neuropsychopharmacol 15:1167鈥?172PubMed Central CrossRef PubMed
    Meyer JH, Wilson AA, Sagrati S, Hussey D, Carella A, Potter WZ, Ginovart N, Spencer EP, Cheok A, Houle S (2004) Serotonin transporter occupancy of five selective serotonin reuptake inhibitors at different doses: an [11C]DASB positron emission tomography study. Am J Psychiatry 161:826鈥?35CrossRef PubMed
    Milak MS, Severance AJ, Prabhakaran J, Kumar JS, Majo VJ, Ogden RT, Mann JJ, Parsey RV (2011) In vivo serotonin-sensitive binding of [11C]CUMI-101: a serotonin 1A receptor agonist positron emission tomography radiotracer. J Cereb Blood Flow Metab 31:243鈥?49PubMed Central CrossRef PubMed
    Mukaida K, Shichino T, Koyanagi S, Himukashi S, Fukuda K (2007) Activity of the serotonergic system during isoflurane anesthesia. Anesth Analg 104:836鈥?39CrossRef PubMed
    Nord M, Finnema SJ, Halldin C, Farde L (2013) Effect of a single dose of escitalopram on serotonin concentration in the non-human and human primate brain. Int J Neuropsychopharmacol 16:1577鈥?586CrossRef PubMed
    Nyberg S, Dencker SJ, Malm U, Dahl ML, Svenson JO, Halldin C, Naskashima Y, Farde L (1998) D2- and 5-HT2 receptor occupancy in high-dose neuroleptic-treated patients. Int J Neuropsychopharmacol 1:95鈥?01CrossRef PubMed
    Pinborg LH, Feng L, Haahr ME, Gillings N, Dyssegaard A, Madsen J, Svarer C, Yndgaard S, Kjaer TW, Parsey RV, Hansen HD, Ettrup A, Paulson OB, Knudsen GM (2012) No change in [(1)(1)C]CUMI-101 binding to 5-HT(1A) receptors after intravenous citalopram in human. Synapse 66:880鈥?84CrossRef PubMed
    Quelch DR, Parker CA, Nutt DJ, Tyacke RJ, Erritzoe D (2012) Influence of different cellular environments on [(3)H]DASB radioligand binding. Synapse 66:1035鈥?039CrossRef PubMed
    Rao N (2007) The clinical pharmacokinetics of escitalopram. Clin Pharmacokinet 46:281鈥?90CrossRef PubMed
    Redrobe JP, Jorgensen M, Christoffersen CT, Montezinho LP, Bastlund JF, Carnerup M, Bundgaard C, Lerdrup L, Plath N (2014) In vitro and in vivo characterisation of Lu AF64280, a novel, brain penetrant phosphodiesterase (PDE) 2A inhibitor: potential relevance to cognitive deficits in schizophrenia. Psychopharmacology (Berlin) 231:3151鈥?167CrossRef
    Ridler K, Plisson C, Rabiner EA, Gunn RN, Easwaramoorthy B, Abi-Dargham A, Laruelle M, Slifstein M (2011) Characterization of in vivo pharmacological properties and sensitivity to endogenous serotonin of [11C] P943: a positron emission tomography study in Papio anubis. Synapse 65:1119鈥?127CrossRef PubMed
    Selvaraj S, Turkheimer F, Rosso L, Faulkner P, Mouchlianitis E, Roiser JP, McGuire P, Cowen PJ, Howes O (2012) Measuring endogenous changes in serotonergic neurotransmission in humans: a [11C]CUMI-101 PET challenge study. Mol Psychiatry 17:1254鈥?260CrossRef PubMed
    Smith GS, Kahn A, Sacher J, Rusjan P, van Eimeren T, Flint A, Wilson AA (2011) Serotonin transporter occupancy and the functional neuroanatomic effects of citalopram in geriatric depression. Am J Geriatr Psychiatr 19:1016鈥?025CrossRef
    Varrone A, Sjoholm N, Eriksson L, Gulyas B, Halldin C, Farde L (2009) Advancement in PET quantification using 3D-OP-OSEM point spread function reconstruction with the HRRT. Eur J Nucl Med Mol Imaging 36:1639鈥?650CrossRef PubMed
    Yamamoto S, Ohba H, Nishiyama S, Harada N, Kakiuchi T, Tsukada H, Domino EF (2013) Subanesthetic doses of ketamine transiently decrease serotonin transporter activity: a PET study in conscious monkeys. Neuropsychopharmacology 38:2666鈥?674PubMed Central CrossRef PubMed
    Yamanaka H, Yokoyama C, Mizuma H, Kurai S, Finnema SJ, Halldin C, Doi H, Onoe H (2014) A possible mechanism of the nucleus accumbens and ventral pallidum 5-HT1B receptors underlying the antidepressant action of ketamine: a PET study with macaques. Transl Psychiatry 4, e342PubMed Central CrossRef PubMed
    Zeng Z, Chen TB, Miller PJ, Dean D, Tang YS, Sur C, Williams DL Jr (2006) The serotonin transporter in rhesus monkey brain: comparison of DASB and citalopram binding sites. Nucl Med Biol 33:555鈥?63CrossRef PubMed
  • 作者单位:Sjoerd J. Finnema (1) (4)
    Christer Halldin (1)
    Benny Bang-Andersen (2)
    Christoffer Bundgaard (2)
    Lars Farde (1) (3)

    1. Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Karolinska University Hospital, Building R5:02, SE-17176, Stockholm, Sweden
    4. Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
    2. H. Lundbeck A/S, Neuroscience Drug Discovery Denmark, Valby, Denmark
    3. AstraZeneca, Translational Science Center at Karolinska Institutet, Stockholm, Sweden
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Pharmacology and Toxicology
    Psychiatry
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-2072
文摘
Rationale A number of serotonin receptor positron emission tomography (PET) radioligands have been shown to be sensitive to changes in extracellular serotonin concentration, in a generalization of the well-known dopamine competition model. High doses of selective serotonin reuptake inhibitors (SSRIs) decrease serotonin receptor availability in monkey brain, consistent with increased serotonin concentrations. However, two recent studies on healthy human subjects, using a single, lower and clinically relevant SSRI dose, showed increased cortical serotonin receptor radioligand binding, suggesting potential decreases in serotonin concentration in projection regions when initiating treatment.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.