Hypoxia-inducible factor 1 and breast cancer metastasis
详细信息    查看全文
  • 作者:Zhao-ji Liu (1)
    Gregg L. Semenza (2)
    Hua-feng Zhang (1)

    1. CAS Key Laboratory of Innate Immunity and Chronic Disease
    ; Innovation Center for Cell Biology ; School of Life Sciences ; University of Science and Technology of China ; Hefei ; 230027 ; China
    2. Johns Hopkins University School of Medicine
    ; Baltimore ; MD ; 21205 ; USA
  • 关键词:Breast cancer ; Hypoxia ; inducible factor 1 (HIF ; 1) ; Metastasis ; R737.9 ; Q2 ; 涔宠吅鐧?/li> 浣庢哀璇卞鍥犲瓙 ; 鑲跨槫杞Щ
  • 刊名:Journal of Zhejiang University SCIENCE B
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:16
  • 期:1
  • 页码:32-43
  • 全文大小:743 KB
  • 参考文献:1. Bao, B., Azmi, A.S., Ali, S., / et al., 2012. The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness. / BBA Rev. Cancer, 1826(2): 272鈥?96. [doi:10.1016/j.bbcan.2012.04.008]
    2. Bocca, C., Ievolella, M., Autelli, R., / et al., 2014. Expression of Cox-2 in human breast cancer cells as a critical determinant of epithelial-to-mesenchymal transition and invasiveness. / Exp. Opin. Therap. Targets, 18(2):121鈥?35. [doi:10.1517/14728222.2014.860447]
    3. Bos, R., van der Groep, P., Greijer, A.E., / et al., 2003. Levels of hypoxia-inducible factor-1伪 independently predict prognosis in patients with lymph node negative breast carcinoma. / Cancer, 97(6):1573鈥?581. [doi:10.1002/cncr.11246]
    4. Brizel, D.M., Scully, S.P., Harrelson, J.M., / et al., 1996. Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. / Cancer Res., 56(5): 941鈥?43.
    5. Camps, C., Buffa, F.M., Colella, S., / et al., 2008. hsa-miR-210 is induced by hypoxia and is an independent prognostic factor in breast cancer. / Clin. Cancer Res., 14(5):1340鈥?348. [doi:10.1158/1078-0432.CCR-07-1755]
    6. Camps, C., Saini, H.K., Mole, D.R., / et al., 2014. Integrated analysis of microRNA and mRNA expression and association with HIF binding reveals the complexity of microRNA expression regulation under hypoxia. / Mol. Cancer, 13:28. [doi:10.1186/1476-4598-13-28]
    7. Cancer Genome Atlas Network, 2012. Comprehensive molecular portraits of human breast tumours. / Nature, 490(7418):61鈥?0. [doi:10.1038/nature11412]
    8. Cascio, S., D鈥橝ndrea, A., Ferla, R., / et al., 2010. miR-20b modulates VEGF expression by targeting HIF-1伪 and STAT3 in MCF-7 breast cancer cells. / J. Cell. Physiol., 224(1):242鈥?49. [doi:10.1002/jcp.22126]
    9. Chaffer, C.L., Weinberg, R.A., 2011. A perspective on cancer cell metastasis. / Science, 331(6024):1559鈥?564. [doi:10.1126/science.1203543]
    10. Chaturvedi, P., Gilkes, D.M., Wong, C.C., / et al., 2013. Hypoxia-inducible factor-dependent breast cancer-mesenchymal stem cell bidirectional signaling promotes metastasis. / J. Clin. Invest., 123(1):189鈥?05. [doi:10.1172/JCI64993]
    11. Conklin, M.W., Eickhoff, J.C., Riching, K.M., / et al., 2011. Aligned collagen is a prognostic signature for survival in human breast carcinoma. / Am. J. Pathol., 178(3): 1221鈥?232. [doi:10.1016/j.ajpath.2010.11.076]
    12. Creighton, C.J., Chang, J.C., Rosen, J.M., 2010. Epithelial-mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer. / J. Mammary Gland Biol. Neopl., 15(2):253鈥?60. [doi:10.1007/s10911-010-9173-1]
    13. Davis, F.M., Azimi, I., Faville, R.A., / et al., 2014. Induction of epithelial-mesenchymal transition (EMT) in breast cancer cells is calcium signal dependent. / Oncogene, 33(18): 2307鈥?316. [doi:10.1038/onc.2013.187]
    14. Du, W.W., Fang, L., Li, M., / et al., 2013. MicroRNA miR-24 enhances tumor invasion and metastasis by targeting PTPN9 and PTPRF to promote EGF signaling. / J. Cell Sci., 126(6):1440鈥?453. [doi:10.1242/jcs.118299]
    15. Duffy, M.J., Maguire, T.M., Hill, A., / et al., 2000. Metalloproteinases: role in breast carcinogenesis, invasion and metastasis. / Breast Cancer Res., 2(4):252鈥?57. [doi:10.1186/bcr65]
    16. Erler, J.T., Bennewith, K.L., Nicolau, M., / et al., 2006. Lysyl oxidase is essential for hypoxia-induced metastasis. / Nature, 440(7088):1222鈥?226. [doi:10.1038/nature04695]
    17. Erler, J.T., Bennewith, K.L., Cox, T.R., / et al., 2009. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. / Cancer Cell, 15(1):35鈥?4. [doi:10.1016/j.ccr.2008.11.012]
    18. Feldser, D., Agani, F., Iyer, N.V., / et al., 1999. Reciprocal positive regulation of hypoxia-inducible factor 1伪 and insulin-like growth factor 2. / Cancer Res., 59(16): 3915鈥?918.
    19. Fidler, I.J., 1970. Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 125I-5-iodo-2鈥?deoxyuridine. / J. Natl. Cancer Inst., 45(4):773鈥?82.
    20. Fukuda, N., Nakayama, M., Jian, T., / et al., 2003. Leukocyte angiotensin II levels in patients with essential hypertension: relation to insulin resistance. / Am. J. Hypertens., 16(2):129鈥?34. [doi:10.1016/S0895-7061(02)03145-X]
    21. Fukuda, R., Hirota, K., Fan, F., / et al., 2002. Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. / J. Biol. Chem., 277(41):38205鈥?8211. [doi:10.1074/jbc.M203781200]
    22. Fukuda, R., Zhang, H.F., Kim, J.W., / et al., 2007. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. / Cell, 129(1):111鈥?22. [doi:10.1016/j.cell.2007.01.047]
    23. Gao, P., Zhang, H.F., Dinavahi, R., / et al., 2007. HIF-dependent antitumorigenic effect of antioxidants / in vivo. / Cancer Cell, 12(3):230鈥?38. [doi:10.1016/j.ccr.2007.08.004]
    24. Generali, D., Berruti, A., Brizzi, M.P., / et al., 2006. Hypoxia-inducible factor-1伪-expression predicts a poor response to primary chemoendocrine therapy and disease-free survival in primary human breast cancer. / Clin. Cancer Res., 12(15):4562鈥?568. [doi:10.1158/1078-0432.CCR-05-2690]
    25. Gilkes, D.M., Bajpai, S., Chaturvedi, P., / et al., 2013a. Hypoxia-inducible factor 1 (HIF-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, P4HA2, and PLOD2 expression in fibroblasts. / J. Biol. Chem., 288(15):10819鈥?0829. [doi:10.1074/jbc.M112.442939]
    26. Gilkes, D.M., Bajpai, S., Wong, C.C., / et al., 2013b. Procollagen lysyl hydroxylase 2 is essential for hypoxia-induced breast cancer metastasis. / Mol. Cancer Res., 11(5): 456鈥?66. [doi:10.1158/1541-7786.MCR-12-0629]
    27. Gilkes, D.M., Chaturvedi, P., Bajpai, S., / et al., 2013c. Collagen prolyl hydroxylases are essential for breast cancer metastasis. / Cancer Res., 73(11):3285鈥?296. [doi:10.1158/0008-5472.CAN-12-3963]
    28. Grimshaw, M.J., 2007. Endothelins and hypoxia-inducible factor in cancer. / Endocr. Rel. Cancer, 14(2):233鈥?44. [doi:10.1677/ERC-07-0057]
    29. Gruber, G., Greiner, R.H., Hlushchuk, R., / et al., 2004. Hypoxia-inducible factor 1伪 in high-risk breast cancer: an independent prognostic parameter?. / Breast Cancer Res., 6(3):R191鈥揜198. [doi:10.1186/bcr775]
    30. Haque, I., Banerjee, S., Mehta, S., / et al., 2011. Cysteine-rich 61-connective tissue growth factor-nephroblastoma-overexpressed 5 (CCN5)/Wnt-1-induced signaling protein-2 (WISP-2) regulates microRNA-10b via hypoxia-inducible factor-1伪-TWIST signaling networks in human breast cancer cells. / J. Biol. Chem., 286(50): 43475鈥?3485. [doi:10.1074/jbc.M111.284158]
    31. Hill, R.P., Marie-Egyptienne, D.T., Hedley, D.W., 2009. Cancer stem cells, hypoxia and metastasis. / Semin. Radiat. Oncol., 19(2):106鈥?11. [doi:10.1016/j.semradonc.2008.12.002]
    32. Hohenberger, P., Felgner, C., Haensch, W., / et al., 1998. Tumor oxygenation correlates with molecular growth determinants in breast cancer. / Breast Cancer Res. Treat., 48(2): 97鈥?06. [doi:10.1023/A:1005921513083]
    33. Horr茅e, N., van Diest, P.J., Daisy, M.D.S.G., / et al., 2007. The invasive front in endometrial carcinoma: higher proliferation and associated derailment of cell cycle regulators. / Human Pathol., 38(8):1232鈥?238. [doi:10.1016/j.humpath.2007.01.008]
    34. Hou, P., Zhao, Y., Li, Z., / et al., 2014. lincRNA-RoR induces epithelial-to-mesenchymal transition and contributes to breast cancer tumorigenesis and metastasis. / Cell Death Dis., 5(6):e1287. [doi:10.1038/cddis.2014.249]
    35. Hu, M., Polyak, K., 2008. Microenvironmental regulation of cancer development. / Curr. Opin. Genet. Dev., 18(1): 27鈥?4. [doi:10.1016/j.gde.2007.12.006]
    36. Huang, J., Zhou, N., Watabe, K., / et al., 2014. Long non-coding RNA UCA1 promotes breast tumor growth by suppression of p27 (Kip1). / Cell Death Dis., 5(1):e1008. [doi:10.1038/cddis.2013.541]
    37. Huang, R.L., Teo, Z.Q., Chong, H.C., / et al., 2011. ANGPTL4 modulates vascular junction integrity by integrin signaling and disruption of intercellular VE-cadherin and claudin-5 clusters. / Blood, 118(14):3990鈥?002. [doi:10.1182/blood-2011-01-328716]
    38. Hugo, H.J., Pereira, L., Suryadinata, R., / et al., 2013. Direct repression of MYB by ZEB1 suppresses proliferation and epithelial gene expression during epithelial-to-mesenchymal transition of breast cancer cells. / Breast Cancer Res., 15(6):R113. [doi:10.1186/bcr3580]
    39. Hwang-Verslues, W.W., Chang, P.H., Wei, P.C., / et al., 2011. miR-495 is upregulated by E12/E47 in breast cancer stem cells, and promotes oncogenesis and hypoxia resistance via downregulation of E-cadherin and REDD1. / Oncogene, 30(21):2463鈥?474. [doi:10.1038/onc.2010.618]
    40. Incorvaia, L., Badalamenti, G., Rini, G., / et al., 2007. MMP-2, MMP-9 and activin A blood levels in patients with breast cancer or prostate cancer metastatic to the bone. / Anticancer Res., 27(3B):1519鈥?525.
    41. Jemal, A., Bray, F., Center, M.M., / et al., 2011. Global cancer statistics. / CA Cancer J. Clin., 61(2):69鈥?0. [doi:10.3322/caac.20107]
    42. Jin, F.Y., Brockmeier, U., Otterbach, F., / et al., 2012. New insight into the SDF-1/CXCR4 axis in a breast carcinoma model: hypoxia-induced endothelial SDF-1 and tumor cell CXCR4 are required for tumor cell intravasation. / Mol. Cancer Res., 10(8):1021鈥?031. [doi:10.1158/1541-7786.MCR-11-0498]
    43. Jo, M., Lester, R.D., Montel, V., / et al., 2009. Reversibility of epithelial-mesenchymal transition (EMT) induced in breast cancer cells by activation of urokinase receptor-dependent cell signaling. / J. Biol. Chem., 284(34): 22825鈥?2833. [doi:10.1074/jbc.M109.023960]
    44. Kalluri, R., Weinberg, R.A., 2009. The basics of epithelial-mesenchymal transition. / J. Clin. Invest., 119(6):1420鈥?428. [doi:10.1172/JCI39104]
    45. Kaplan, H.G., Malmgren, J.A., Atwood, M., 2005. Tumor size, age and stage in patient detected breast cancer. / J. Clin. Oncol., 23(16):716.
    46. Kasuno, K., Takabuchi, S., Fukuda, K., / et al., 2004. Nitric oxide induces hypoxia-inducible factor 1 activation that is dependent on MAPK and phosphatidylinositol 3-kinase signaling. / J. Biol. Chem., 279(4):2550鈥?558. [doi:10.1074/jbc.M308197200]
    47. Keklikoglou, I., Koerner, C., Schmidt, C., / et al., 2012. MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-魏B and TGF-尾 signaling pathways. / Oncogene, 31(37): 4150鈥?163. [doi:10.1038/onc.2011.571]
    48. Kim, J.W., Tchernyshyov, I., Semenza, G.L., / et al., 2006. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. / Cell Metab., 3(3):177鈥?85. [doi:10.1016/j.cmet.2006.02.002]
    49. Krieg, M., Haas, R., Brauch, H., / et al., 2000. Up-regulation of hypoxia-inducible factors HIF-1伪 and HIF-2伪 under normoxic conditions in renal carcinoma cells by von Hippel-Lindau tumor suppressor gene loss of function. / Oncogene, 19(48):5435鈥?443. [doi:10.1038/sj.onc.1203938]
    50. Krishnamachary, B., Zagzag, D., Nagasawa, H., / et al., 2006. Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. / Cancer Res., 66(5):2725鈥?731. [doi:10.1158/0008-5472.CAN-05-3719]
    51. Kulshreshtha, R., Ferracin, M., Wojcik, S.E., / et al., 2007. A microRNA signature of hypoxia. / Mol. Cell. Biol., 27(5): 1859鈥?867. [doi:10.1128/MCB.01395-06]
    52. Lando, D., Peet, D.J., Whelan, D.A., / et al., 2002. Asparagine hydroxylation of the HIF transactivation domain: a hypoxic switch. / Science, 295(5556):858鈥?61. [doi:10.1126/science.1068592]
    53. Laughner, E., Taghavi, P., Chiles, K., / et al., 2001. Her2 (neu) signaling increases the rate of hypoxia-inducible factor 1 alpha (HIF-1伪) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. / Mol. Cell. Biol., 21(12):3995鈥?004. [doi:10.1128/MCB. 21.12.3995-4004.2001]
    54. Lech, R., Przemyslaw, O., 2011. Epidemiological models for breast cancer risk estimation. / Ginekol. Pol., 82(6): 451鈥?54.
    55. Lee, H.S., Seo, E.Y., Kang, N.E., / et al., 2008. [6]-Gingerol inhibits metastasis of MDA-MB-231 human breast cancer cells. / J. Nutr. Biochem., 19(5):313鈥?19. [doi:10.1016/j.jnutbio.2007.05.008]
    56. Li, J.Y., Zhang, Y., Zhang, W.H., / et al., 2012. Differential distribution of miR-20a and miR-20b may underly metastatic heterogeneity of breast cancers. / Asian Pac. J. Cancer Prev., 13(5):1901鈥?906. [doi:10.7314/APJCP.2012.13.5.1901]
    57. Li, X., Liu, X., Xu, W., / et al., 2013. c-MYC-regulated / miR-23a/24-2/27a cluster promotes mammary carcinoma cell invasion and hepatic metastasis by targeting / Sprouty2. / J. Biol. Chem., 288(25):18121鈥?8133. [doi:10.1074/jbc.M113.478560]
    58. Ling, H., Fabbri, M., Calin, G.A., 2013. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. / Nat. Rev. Drug Disc., 12(11):847鈥?65. [doi:10.1038/nrd4140]
    59. Liu, X.H., Kirschenbaum, A., Lu, M., / et al., 2002. Prostaglandin E2 induces hypoxia-inducible factor-1伪 stabilization and nuclear localization in a human prostate cancer cell line. / J. Biol. Chem., 277(51):50081鈥?0086. [doi:10.1074/jbc.M201095200]
    60. Loayza-Puch, F., Yoshida, Y., Matsuzaki, T., / et al., 2010. Hypoxia and RAS-signaling pathways converge on, and cooperatively downregulate, the RECK tumor-suppressor protein through microRNAs. / Oncogene, 29(18):2638鈥?648. [doi:10.1038/onc.2010.23]
    61. Lock, F.E., Mcdonald, P.C., Lou, Y., / et al., 2013. Targeting carbonic anhydrase IX depletes breast cancer stem cells within the hypoxic niche. / Oncogene, 32(44):5210鈥?219. [doi:10.1038/onc.2012.550]
    62. Lundgren, K., Holm, C., Landberg, G., 2007. Hypoxia and breast cancer: prognostic and therapeutic implications. / Cell. Mol. Life Sci., 64(24):3233鈥?247. [doi:10.1007/s00018-007-7390-6]
    63. Ma, L., Teruya-Feldstein, J., Weinberg, R.A., 2007. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. / Nature, 449(7163):682鈥?88. [doi:10.1038/nature06174]
    64. Ma, L., Reinhardt, F., Pan, E., / et al., 2010. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. / Nat. Biotechnol., 28(4):341鈥?47. [doi:10.1038/nbt.1618]
    65. Maglione, E., Ferreira, L.S., Cattapan, G., 2006. Asymptotic properties of bound states in coupled quantum wave guides. / J. Phys. A Math. General, 39(5):1207鈥?228. [doi:10.1088/0305-4470/39/5/013]
    66. Mahon, P.C., Hirota, K., Semenza, G.L., 2001. FIH-1: a novel protein that interacts with HIF-1伪 and VHL to mediate repression of HIF-1 transcriptional activity. / Genes Devel., 15(20):2675鈥?686. [doi:10.1101/gad.924501]
    67. Matouk, I.J., Degroot, N., Mezan, S., / et al., 2007. The H19 non-coding RNA is essential for human tumor growth. / PLoS ONE, 2(9):e845. [doi:10.1371/journal.pone.0000 845]
    68. Matouk, I.J., Mezan, S., Mizrahi, A., / et al., 2010. The oncofetal H19 RNA connection: hypoxia, p53 and cancer. / BBA Mol. Cell Res., 1803(4):443鈥?51. [doi:10.1016/j.bbamcr.2010.01.010]
    69. Matouk, I.J., Raveh, E., Abu-Lail, R., / et al., 2014. Oncofetal H19 RNA promotes tumor metastasis. / BBA Mol. Cell Res., 1843(7):1414鈥?426. [doi:10.1016/j.bbamcr.2014.03.023]
    70. May, C.D., Sphyris, N., Evans, K.W., / et al., 2011. Epithelial-mesenchymal transition and cancer stem cells: a dangerously dynamic duo in breast cancer progression. / Breast Cancer Res., 13(1):202. [doi:10.1186/bcr2789]
    71. Mees, G., Dierckx, R., Vangestel, C., / et al., 2009. Molecular imaging of hypoxia with radiolabelled agents. / Eur. J. Nucl. Med. Mol. Imag., 36(10):1674鈥?686. [doi:10.1007/s00259-009-1195-9]
    72. Moreno-Bueno, G., Portillo, F., Cano, A., 2008. Transcriptional regulation of cell polarity in EMT and cancer. / Oncogene, 27(55):6958鈥?969. [doi:10.1038/onc.2008.346]
    73. Munoz-Najar, U.M., Neurath, K.M., Vumbaca, F., / et al., 2006. Hypoxia stimulates breast carcinoma cell invasion through MT1-MMP and MMP-2 activation. / Oncogene, 25(16):2379鈥?392. [doi:10.1038/sj.onc.1209273]
    74. Padua, D., Zhang, X.H.F., Wang, Q.Q., / et al., 2008. TGF-尾 primes breast tumors for lung metastasis seeding through angiopoietin-like 4. / Cell, 133(1):66鈥?7. [doi:10.1016/j.cell.2008.01.046]
    75. Philip, B., Ito, K., Moreno-Sanchez, R., / et al., 2013. HIF expression and the role of hypoxic microenvironments within primary tumours as protective sites driving cancer stem cell renewal and metastatic progression. / Carcinogenesis, 34(8):1699鈥?707. [doi:10.1093/carcin/bgt209]
    76. Pritchard, S.C., Nicolson, M.C., Lloret, C., / et al., 2001. Expression of matrix metalloproteinases 1, 2, 9 and their tissue inhibitors in stage II non-small cell lung cancer: implications for MMP inhibition therapy. / Oncol. Rep., 8(2):421鈥?24.
    77. Provenzano, P.P., Eliceiri, K.W., Campbell, J.M., / et al., 2006. Collagen reorganization at the tumor-stromal interface facilitates local invasion. / BMC Med., 4(1):38. [doi:10.1186/1741-7015-4-38]
    78. Quintero, M., Brennan, P.A., Thomas, G.J., / et al., 2006. Nitric oxide is a factor in the stabilization of hypoxia-inducible factor-1伪 in cancer: role of free radical formation. / Cancer Res., 66(2):770鈥?74. [doi:10.1158/0008-5472.CAN-05-0333]
    79. Ravi, D., Ramadas, K., Mathew, B.S., / et al., 2001. Apoptosis, angiogenesis and proliferation: trifunctional measure of tumour response to radiotherapy for oral cancer. / Oral Oncol., 37(2):164鈥?71. [doi:10.1016/S1368-8375(00)00082-8]
    80. Rose, C., Vtoraya, O., Pluzanska, A., / et al., 2003. An open randomised trial of second-line endocrine therapy in advanced breast cancer. Comparison of the aromatase inhibitors letrozole and anastrozole. / Eur. J. Cancer, 39(16): 2318鈥?327. [doi:10.1016/S0959-8049(03)00630-0]
    81. Roth茅, F., Ignatiadis, M., Chaboteaux, C., / et al., 2011. Global microRNA expression profiling identifies miR-210 associated with tumor proliferation, invasion and poor clinical outcome in breast cancer. / PLoS ONE, 6(6): e20980. [doi:10.1371/journal.pone.0020980]
    82. Sceneay, J., Chow, M.T., Chen, A., / et al., 2012. Primary tumor hypoxia recruits CD11b+/Ly6Cmmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche. / Cancer Res., 72(16):3906鈥?911. [doi:10.1158/0008-5472.CAN-11-3873]
    83. Schito, L., Rey, S., Tafani, M., / et al., 2012. Hypoxia-inducible factor 1-dependent expression of platelet-derived growth factor b promotes lymphatic metastasis of hypoxic breast cancer cells. / PNAS, 109(40):E2707鈥揈2716. [doi:10.1073/pnas.1214019109]
    84. Semenza, G.L., 2003. Targeting HIF-1 for cancer therapy. / Nat. Rev. Cancer, 3(10):721鈥?32. [doi:10.1038/nrc1187]
    85. Semenza, G.L., 2011. Oxygen sensing, homeostasis, and disease reply. / N. Engl. J. Med., 365(19):537鈥?47. [doi:10.1056/NEJMra1011165]
    86. Semenza, G.L., 2012. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. / Trends Pharmacol. Sci., 33(4):207鈥?14. [doi:10.1016/j.tips.2012.01.005]
    87. Singh, A., Settleman, J., 2010. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. / Oncogene, 29(34):4741鈥?751. [doi:10.1038/onc.2010.215]
    88. Takahashi, K., Yan, I.K., Haga, H., / et al., 2013. The hypoxia-induced long non-coding RNA linc-RoR modulates tumor cell resistance to hypoxia by an extra-cellular vesicle mediated regulation of hypoxia-signaling pathways in hepatocellular cancer. / Hepatology, 58:1067A.
    89. Talks, K.L., Turley, H., Gatter, K.C., / et al., 2000. The expression and distribution of the hypoxia-inducible factors HIF-1伪 and HIF-2伪 in normal human tissues, cancers, and tumor-associated macrophages. / Am. J. Pathol., 157(2): 411鈥?21. [doi:10.1016/S0002-9440(10)64554-3]
    90. Thiery, J.P., 2002. Epithelial-mesenchymal transitions in tumour progression. / Nat. Rev. Cancer, 2(6):442鈥?54. [doi:10.1038/nrc822]
    91. Valastyan, S., Weinberg, R.A., 2011. Tumor metastasis: molecular insights and evolving paradigms. / Cell, 147(2): 275鈥?92. [doi:10.1016/j.cell.2011.09.024]
    92. Vaupel, P., Schlenger, K., Knoop, C., / et al., 1991. Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. / Cancer Res., 51(12):3316鈥?322.
    93. Vaupel, P., Mayer, A., Hockel, M., 2004. Tumor hypoxia and malignant progression. / Meth. Enzymol., 381:335鈥?54. [doi:10.1016/S0076-6879(04)81023-1]
    94. Vaupel, P., Hockel, M., Mayer, A., 2007. Detection and characterization of tumor hypoxia using pO2 histography. / Antioxid. Redox. Signal., 9(8):1221鈥?235. [doi:10.1089/ars.2007.1628]
    95. Volinia, S., Galasso, M., Sana, M.E., / et al., 2012. Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. / PNAS, 109(8): 3024鈥?029. [doi:10.1073/pnas.1200010109]
    96. Wang, G.L., Jiang, B.H., Rue, E.A., / et al., 1995. Hypoxia-inducible factor-1 is a basic-helix-loop-helix-pas heterodimer regulated by cellular O2 tension. / PNAS, 92(12): 5510鈥?514. [doi:10.1073/pnas.92.12.5510]
    97. Weigelt, B., Peterse, J.L., van鈥檛 Veer, L.J., 2005. Breast cancer metastasis: markers and models. / Nat. Rev. Cancer, 5(8): 591鈥?02. [doi:10.1038/nrc1670]
    98. Wong, C.C.L., Gilkes, D.M., Zhang, H.F., / et al., 2011. Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation. / PNAS, 108(39): 16369鈥?6374. [doi:10.1073/pnas.1113483108]
    99. Wong, C.C.L., Zhang, H., Gilkes, D.M., / et al., 2012. Inhibitors of hypoxia-inducible factor 1 block breast cancer metastatic niche formation and lung metastasis. / J. Mol. Med., 90(7):803鈥?15. [doi:10.1007/s00109-011-0855-y]
    100. Xing, F., Okuda, H., Watabe, M., / et al., 2011. Hypoxia-induced Jagged2 promotes breast cancer metastasis and self-renewal of cancer stem-like cells. / Oncogene, 30(39): 4075鈥?086. [doi:10.1038/onc.2011.122]
    101. Xue, M., Li, X., Li, Z., / et al., 2014. Urothelial carcinoma associated 1 is a hypoxia-inducible factor-1伪-targeted long noncoding RNA that enhances hypoxic bladder cancer cell proliferation, migration, and invasion. / Tumour Biol., 35(7):6901鈥?912. [doi:10.1007/s13277-014-1925-x]
    102. Zhang, H., Gao, P., Fukuda, R., / et al., 2007. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. / Cancer Cell, 11(5):407鈥?20. [doi:10.1016/j.ccr.2007.04.001]
    103. Zhang, H., Qian, D.Z., Tan, Y.S., / et al., 2008. Digoxin and other cardiac glycosides inhibit HIF-1伪 synthesis and block tumor growth. / PNAS, 105(50):19579鈥?9586. [doi:10.1073/pnas.0809763105]
    104. Zhang, H., Wong, C.C.L., Wei, H., / et al., 2012. HIF-1-dependent expression of angiopoietin-like 4 and L1CAM mediates vascular metastasis of hypoxic breast cancer cells to the lungs. / Oncogene, 31(14):1757鈥?770. [doi:10.1038/onc.2011.365]
    105. Zhong, H., de Marzo, A.M., Laughner, E., / et al., 1999. Overexpression of hypoxia-inducible factor 1伪 in common human cancers and their metastases. / Cancer Res., 59(22): 5830鈥?835.
    106. Zhong, H., Chiles, K., Feldser, D., / et al., 2000. Modulation of hypoxia-inducible factor 1伪 expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. / Cancer Res., 60(6):1541鈥?545.
    107. Zundel, W., Schindler, C., Haas-Kogan, D., / et al., 2000. Loss of PTEN facilitates HIF-1-mediated gene expression. / Gene Devel., 14(4):391鈥?96.
  • 刊物主题:Biomedicine general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1862-1783
文摘
Accumulating evidence has shown that the hypoxic microenvironment, which is critical during cancer development, plays a key role in regulating breast cancer progression and metastasis. The effects of hypoxia-inducible factor 1 (HIF-1), a master regulator of the hypoxic response, have been extensively studied during these processes. In this review, we focus on the roles of HIF-1 in regulating breast cancer cell metastasis, specifically its effects on multiple key steps of metastasis, such as epithelial-mesenchymal transition (EMT), invasion, extravasation, and metastatic niche formation. We also discuss the roles of HIF-1-regulated non-coding RNAs in breast cancer metastasis, and therapeutic opportunities for breast cancer through targeting the HIF-1 pathway.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.