Effects of an anti-inflammatory VAP-1/SSAO inhibitor, PXS-4728A, on pulmonary neutrophil migration
详细信息    查看全文
  • 作者:Heidi C Schilter (1)
    Adam Collison (2)
    Remo C Russo (3) (4)
    Jonathan S Foot (1)
    Tin T Yow (1)
    Angelica T Vieira (4)
    Livia D Tavares (4)
    Joerg Mattes (2)
    Mauro M Teixeira (4)
    Wolfgang Jarolimek (1) (5)

    1. Drug Discovery Department
    ; Pharmaxis Ltd ; 20 Rodborough Road ; Frenchs Forest ; Sydney ; NSW ; 2086 ; Australia
    2. The University of Newcastle & Vaccines
    ; Infection ; Viruses & Asthma ; Newcastle ; Australia
    3. Laborat贸rio de Imunologia e Mec芒nica Pulmonar
    ; Departamento de Fisiologia e Biof铆sica ; Universidade Federal de Minas Gerais ; Av. Antonio Carlos ; 6627 ; Pampulha ; 31270-901 ; Belo Horizonte ; MG ; Brazil
    4. Laborat贸rio de Imunofarmacologia
    ; Departamento de Bioqu铆mica e Imunologia ; Universidade Federal de Minas Gerais ; Av. Antonio Carlos ; 6627 ; Pampulha ; 31270-901 ; Belo Horizonte ; MG ; Brazil
    5. School of Medical & Molecular Biosciences
    ; University of Technology Sydney ; City Campus ; PO Box 123 Broadway ; 2007 ; Sydney ; NSW ; Australia
  • 关键词:Neutrophils ; Adhesion molecules ; VAP ; 1/SSAO ; Lung inflammation ; COPD
  • 刊名:Respiratory Research
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:16
  • 期:1
  • 全文大小:1,357 KB
  • 参考文献:1. Hoenderdos, K, Condliffe, A (2013) The neutrophil in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 48: pp. 531-9 CrossRef
    2. Gifford, AM, Chalmers, JD (2014) The role of neutrophils in cystic fibrosis. Curr Opin Hematol 21: pp. 16-22 CrossRef
    3. Grommes, J, Soehnlein, O (2011) Contribution of neutrophils to acute lung injury. Mol Med 17: pp. 293-307 CrossRef
    4. Zheng, L, Walters, EH, Ward, C, Wang, N, Orsida, B, Whitford, H (2000) Airway neutrophilia in stable and bronchiolitis obliterans syndrome patients following lung transplantation. Thorax 55: pp. 53-9 CrossRef
    5. Kolaczkowska, E, Kubes, P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13: pp. 159-75 CrossRef
    6. Elizur, A, Cannon, CL, Ferkol, TW (2008) Airway inflammation in cystic fibrosis. Chest 133: pp. 489-95 CrossRef
    7. Cantin, A (1995) Cystic fibrosis lung inflammation: early, sustained, and severe. Am J Respir Crit Care Med 151: pp. 939-41
    8. Konstan, MW, Hilliard, KA, Norvell, TM, Berger, M (1994) Bronchoalveolar lavage findings in cystic fibrosis patients with stable, clinically mild lung disease suggest ongoing infection and inflammation. Am J Respir Crit Care Med 150: pp. 448-54 CrossRef
    9. Rouschop, KM, Roelofs, JJ, Claessen, N, Costa, MP, Zwaginga, JJ, Pals, ST (2005) Protection against renal ischemia reperfusion injury by CD44 disruption. J Am Soc Nephrol 16: pp. 2034-43 CrossRef
    10. Wittmann, S, Rothe, G, Schmitz, G, Frohlich, D (2004) Cytokine upregulation of surface antigens correlates to the priming of the neutrophil oxidative burst response. Cytometry A 57: pp. 53-62 CrossRef
    11. Ley, K, Laudanna, C, Cybulsky, MI, Nourshargh, S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7: pp. 678-89 CrossRef
    12. Doerschuk, CM (2000) Leukocyte trafficking in alveoli and airway passages. Respir Res 1: pp. 136-40 CrossRef
    13. Hill, PA, Lan, HY, Nikolic-Paterson, DJ, Atkins, RC (1994) Pulmonary expression of ICAM-1 and LFA-1 in experimental Goodpasture鈥檚 syndrome. Am J Pathol 145: pp. 220-7
    14. Sato, N, Suzuki, Y, Nishio, K, Suzuki, K, Naoki, K, Takeshita, K (2000) Roles of ICAM-1 for abnormal leukocyte recruitment in the microcirculation of bleomycin-induced fibrotic lung injury. Am J Respir Crit Care Med 161: pp. 1681-8 CrossRef
    15. Burns, JA, Issekutz, TB, Yagita, H, Issekutz, AC (2001) The alpha 4 beta 1 (very late antigen (VLA)-4, CD49d/CD29) and alpha 5 beta 1 (VLA-5, CD49e/CD29) integrins mediate beta 2 (CD11/CD18) integrin-independent neutrophil recruitment to endotoxin-induced lung inflammation. J Immunol 166: pp. 4644-9 CrossRef
    16. Sikora, L, Johansson, AC, Rao, SP, Hughes, GK, Broide, DH, Sriramarao, P (2003) A murine model to study leukocyte rolling and intravascular trafficking in lung microvessels. Am J Pathol 162: pp. 2019-28 CrossRef
    17. Goncalves, AS, Appelberg, R (2002) The involvement of the chemokine receptor CXCR2 in neutrophil recruitment in LPS-induced inflammation and in Mycobacterium avium infection. Scand J Immunol 55: pp. 585-91 CrossRef
    18. Chapman, RW, Minnicozzi, M, Celly, CS, Phillips, JE, Kung, TT, Hipkin, RW (2007) A novel, orally active CXCR1/2 receptor antagonist, Sch527123, inhibits neutrophil recruitment, mucus production, and goblet cell hyperplasia in animal models of pulmonary inflammation. J Pharmacol Exp Ther 322: pp. 486-93 CrossRef
    19. Holz, O, Khalilieh, S, Ludwig-Sengpiel, A, Watz, H, Stryszak, P, Soni, P (2010) SCH527123, a novel CXCR2 antagonist, inhibits ozone-induced neutrophilia in healthy subjects. Eur Respir J 35: pp. 564-70 CrossRef
    20. Lazaar, AL, Sweeney, LE, MacDonald, AJ, Alexis, NE, Chen, C, Tal-Singer, R (2011) SB-656933, a novel CXCR2 selective antagonist, inhibits ex vivo neutrophil activation and ozone-induced airway inflammation in humans. Br J Clin Pharmacol 72: pp. 282-93 CrossRef
    21. Leaker, BR, Barnes, PJ, O鈥機onnor, B (2013) Inhibition of LPS-induced airway neutrophilic inflammation in healthy volunteers with an oral CXCR2 antagonist. Respir Res 14: pp. 137 CrossRef
    22. Kirton, CM, Laukkanen, ML, Nieminen, A, Merinen, M, Stolen, CM, Armour, K (2005) Function-blocking antibodies to human vascular adhesion protein-1: a potential anti-inflammatory therapy. Eur J Immunol 35: pp. 3119-30 CrossRef
    23. Dunkel, J, Aguilar-Pimentel, JA, Ollert, M, Fuchs, H, Gailus-Durner, V, Angelis, MH (2014) Endothelial amine oxidase AOC3 transiently contributes to adaptive immune responses in the airways. Eur J Immunol 44: pp. 3232-9 CrossRef
    24. Foot, JS, Yow, TT, Schilter, H, Buson, A, Deodhar, M, Findlay, AD (2013) PXS-4681A, a potent and selective mechanism-based inhibitor of SSAO/VAP-1 with anti-inflammatory effects in vivo. J Pharmacol Exp Ther 347: pp. 365-74 CrossRef
    25. Yu, PH, Lu, LX, Fan, H, Kazachkov, M, Jiang, ZJ, Jalkanen, S (2006) Involvement of semicarbazide-sensitive amine oxidase-mediated deamination in lipopolysaccharide-induced pulmonary inflammation. Am J Pathol 168: pp. 718-26 CrossRef
    26. Rucker, RB, Romero-Chapman, N, Wong, T, Lee, J, Steinberg, FM, McGee, C (1996) Modulation of lysyl oxidase by dietary copper in rats. J Nutr 126: pp. 51-60
    27. Pinho, V, Russo, RC, Amaral, FA, Sousa, LP, Barsante, MM, Souza, DG (2007) Tissue- and stimulus-dependent role of phosphatidylinositol 3-kinase isoforms for neutrophil recruitment induced by chemoattractants in vivo. J Immunol 179: pp. 7891-8 CrossRef
    28. Rocksen, D, Lilliehook, B, Larsson, R, Johansson, T, Bucht, A (2000) Differential anti-inflammatory and anti-oxidative effects of dexamethasone and N-acetylcysteine in endotoxin-induced lung inflammation. Clin Exp Immunol 122: pp. 249-56 CrossRef
    29. Russo, RC, Guabiraba, R, Garcia, CC, Barcelos, LS, Roffe, E, Souza, AL (2009) Role of the chemokine receptor CXCR2 in bleomycin-induced pulmonary inflammation and fibrosis. Am J Respir Cell Mol Biol 40: pp. 410-21 CrossRef
    30. Collison, A, Hatchwell, L, Verrills, N, Wark, PA, Siqueira, AP, Tooze, M (2013) The E3 ubiquitin ligase midline 1 promotes allergen and rhinovirus-induced asthma by inhibiting protein phosphatase 2A activity. Nat Med 19: pp. 232-7 CrossRef
    31. Souza Alves, CC, Collison, A, Hatchwell, L, Plank, M, Morten, M, Foster, PS (2013) Inhibiting AKT phosphorylation employing non-cytotoxic anthraquinones ameliorates TH2 mediated allergic airways disease and rhinovirus exacerbation. PLoS One 8: pp. e79565 CrossRef
    32. Beigelman, A, Mikols, CL, Gunsten, SP, Cannon, CL, Brody, SL, Walter, MJ (2010) Azithromycin attenuates airway inflammation in a mouse model of viral bronchiolitis. Respir Res 11: pp. 90 CrossRef
    33. Raimondi, L, Pirisino, R, Ignesti, G, Capecchi, S, Banchelli, G, Buffoni, F (1991) Semicarbazide-sensitive amine oxidase activity (SSAO) of rat epididymal white adipose tissue. Biochem Pharmacol 41: pp. 467-70 CrossRef
    34. Stolen, CM, Marttila-Ichihara, F, Koskinen, K, Yegutkin, GG, Turja, R, Bono, P (2005) Absence of the endothelial oxidase AOC3 leads to abnormal leukocyte traffic in vivo. Immunity 22: pp. 105-15 CrossRef
    35. Dejager, L, Pinheiro, I, Dejonckheere, E, Libert, C (2011) Cecal ligation and puncture: the gold standard model for polymicrobial sepsis?. Trends Microbiol 19: pp. 198-208 CrossRef
    36. Salmi, M, Jalkanen, S (1992) A 90-kilodalton endothelial cell molecule mediating lymphocyte binding in humans. Science 257: pp. 1407-9 CrossRef
    37. Smith, DJ, Salmi, M, Bono, P, Hellman, J, Leu, T, Jalkanen, S (1998) Cloning of vascular adhesion protein 1 reveals a novel multifunctional adhesion molecule. J Exp Med 188: pp. 17-27 CrossRef
    38. Salmi, M, Rajala, P, Jalkanen, S (1997) Homing of mucosal leukocytes to joints. Distinct endothelial ligands in synovium mediate leukocyte-subtype specific adhesion. J Clin Invest 99: pp. 2165-72 CrossRef
    39. Yegutkin, GG, Salminen, T, Koskinen, K, Kurtis, C, McPherson, MJ, Jalkanen, S (2004) A peptide inhibitor of vascular adhesion protein-1 (VAP-1) blocks leukocyte-endothelium interactions under shear stress. Eur J Immunol 34: pp. 2276-85 CrossRef
    40. Tohka, S, Laukkanen, M, Jalkanen, S, Salmi, M (2001) Vascular adhesion protein 1 (VAP-1) functions as a molecular brake during granulocyte rolling and mediates recruitment in vivo. FASEB J 15: pp. 373-82 CrossRef
    41. Kivi, E, Elima, K, Aalto, K, Nymalm, Y, Auvinen, K, Koivunen, E (2009) Human Siglec-10 can bind to vascular adhesion protein-1 and serves as its substrate. Blood 114: pp. 5385-92 CrossRef
    42. Olivieri, A, O鈥橲ullivan, J, Fortuny, LR, Vives, IL, Tipton, KF (1804) Interaction of L-lysine and soluble elastin with the semicarbazide-sensitive amine oxidase in the context of its vascular-adhesion and tissue maturation functions. Biochim Biophys Acta 2010: pp. 941-7
    43. Olivieri, A, Tipton, K, O鈥橲ullivan, J (2007) L-lysine as a recognition molecule for the VAP-1 function of SSAO. J Neural Transm 114: pp. 747-9 CrossRef
    44. Liu, D, Liu, T, Sy, MS (1998) Identification of two regions in the cytoplasmic domain of CD44 through which PMA, calcium, and foskolin differentially regulate the binding of CD44 to hyaluronic acid. Cell Immunol 190: pp. 132-40 CrossRef
    45. Norgard, KE, Han, H, Powell, L, Kriegler, M, Varki, A, Varki, NM (1993) Enhanced interaction of L-selectin with the high endothelial venule ligand via selectively oxidized sialic acids. Proc Natl Acad Sci U S A 90: pp. 1068-72 CrossRef
    46. Torgersen, D, Mullin, NP, Drickamer, K (1998) Mechanism of ligand binding to E- and P-selectin analyzed using selectin/mannose-binding protein chimeras. J Biol Chem 273: pp. 6254-61 CrossRef
    47. Tripathi, SC, Dyke, TE (1992) Characterization of GP110, a neutrophil surface protein. Infect Immun 60: pp. 3015-6
    48. Lien, DC, Henson, PM, Capen, RL, Henson, JE, Hanson, WL, Wagner, WW (1991) Neutrophil kinetics in the pulmonary microcirculation during acute inflammation. Lab Invest 65: pp. 145-59
    49. Salter-Cid, LM, Wang, E, O鈥橰ourke, AM, Miller, A, Gao, H, Huang, L (2005) Anti-inflammatory effects of inhibiting the amine oxidase activity of semicarbazide-sensitive amine oxidase. J Pharmacol Exp Ther 315: pp. 553-62 CrossRef
    50. Foot, JS, Deodhar, M, Turner, CI, Yin, P, Dam, EM, Silva, DG (2012) The discovery and development of selective 3-fluoro-4-aryloxyallylamine inhibitors of the amine oxidase activity of semicarbazide-sensitive amine oxidase/vascular adhesion protein-1 (SSAO/VAP-1). Bioorg Med Chem Lett 22: pp. 3935-40 CrossRef
    51. Neth, OW, Bajaj-Elliott, M, Turner, MW, Klein, NJ (2005) Susceptibility to infection in patients with neutropenia: the role of the innate immune system. Br J Haematol 129: pp. 713-22 CrossRef
    52. Dinauer MC, Lekstrom-Himes JA, Dale DC. Inherited neutrophil disorders: molecular basis and new therapies. Hematology Am Soc Hematol Educ Program. 2000;1:303鈥?8.
    53. Koskinen, K, Nevalainen, S, Karikoski, M, Hanninen, A, Jalkanen, S, Salmi, M (2007) VAP-1-deficient mice display defects in mucosal immunity and antimicrobial responses: implications for antiadhesive applications. J Immunol 179: pp. 6160-8 CrossRef
    54. Johnston, SL, Pattemore, PK, Sanderson, G, Smith, S, Lampe, F, Josephs, L (1995) Community study of role of viral infections in exacerbations of asthma in 9鈥?1 year old children. BMJ 310: pp. 1225-9 CrossRef
    55. Johnston, SL, Pattemore, PK, Sanderson, G, Smith, S, Campbell, MJ, Josephs, LK (1996) The relationship between upper respiratory infections and hospital admissions for asthma: a time-trend analysis. Am J Respir Crit Care Med 154: pp. 654-60 CrossRef
    56. Wark, PA, Johnston, SL, Moric, I, Simpson, JL, Hensley, MJ, Gibson, PG (2002) Neutrophil degranulation and cell lysis is associated with clinical severity in virus-induced asthma. Eur Respir J 19: pp. 68-75 CrossRef
    57. Nagarkar, DR, Wang, Q, Shim, J, Zhao, Y, Tsai, WC, Lukacs, NW (2009) CXCR2 is required for neutrophilic airway inflammation and hyperresponsiveness in a mouse model of human rhinovirus infection. J Immunol 183: pp. 6698-707 CrossRef
    58. Brusselle, GG, Vanderstichele, C, Jordens, P, Deman, R, Slabbynck, H, Ringoet, V (2013) Azithromycin for prevention of exacerbations in severe asthma (AZISAST): a multicentre randomised double-blind placebo-controlled trial. Thorax 68: pp. 322-9 CrossRef
  • 刊物主题:Pneumology/Respiratory System;
  • 出版者:BioMed Central
  • ISSN:1465-9921
文摘
Background and purpose The persistent influx of neutrophils into the lung and subsequent tissue damage are characteristics of COPD, cystic fibrosis and acute lung inflammation. VAP-1/SSAO is an endothelial bound adhesion molecule with amine oxidase activity that is reported to be involved in neutrophil egress from the microvasculature during inflammation. This study explored the role of VAP-1/SSAO in neutrophilic lung mediated diseases and examined the therapeutic potential of the selective inhibitor PXS-4728A. Methods Mice treated with PXS-4728A underwent intra-vital microscopy visualization of the cremaster muscle upon CXCL1/KC stimulation. LPS inflammation, Klebsiella pneumoniae infection, cecal ligation and puncture as well as rhinovirus exacerbated asthma models were also assessed using PXS-4728A. Results Selective VAP-1/SSAO inhibition by PXS-4728A diminished leukocyte rolling and adherence induced by CXCL1/KC. Inhibition of VAP-1/SSAO also dampened the migration of neutrophils to the lungs in response to LPS, Klebsiella pneumoniae lung infection and CLP induced sepsis; whilst still allowing for normal neutrophil defense function, resulting in increased survival. The functional effects of this inhibition were demonstrated in the RV exacerbated asthma model, with a reduction in cellular infiltrate correlating with a reduction in airways hyperractivity. Conclusions and implications This study demonstrates that the endothelial cell ligand VAP-1/SSAO contributes to the migration of neutrophils during acute lung inflammation, pulmonary infection and airway hyperractivity. These results highlight the potential of inhibiting of VAP-1/SSAO enzymatic function, by PXS-4728A, as a novel therapeutic approach in lung diseases that are characterized by neutrophilic pattern of inflammation.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.