Mechanical Design and Analysis of the Novel 6-DOF Variable Stiffness Robot Arm Based on Antagonistic Driven Joints
详细信息    查看全文
  • 作者:Jishu Guo ; Guohui Tian
  • 关键词:VSA ; Convenience control ; EQTS ; ADJ ; Mechanical solution ; Variable stiffness robot arm
  • 刊名:Journal of Intelligent and Robotic Systems
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:82
  • 期:2
  • 页码:207-235
  • 全文大小:6,614 KB
  • 参考文献:1.Lin, C.-Y., Jo, P.-C., Tseng, C.-K.: New compliance-mechanism design for small companion robots. J. Intell. Robot. Syst. 64(3–4), 585–601 (2011)CrossRef
    2.Tagliamonte, N.L., Sergi, F., Accoto, D., Carpino, G., Guglielmelli, E.: Double actuation architectures for rendering variable impedance in compliant robots: A review. Mechatronics 22(8), 1187–1203 (2014)CrossRef
    3.Huang, T.-H., Huang, H.-P., Kuan, J.-Y.: Mechanism and control of continuous-state coupled elastic actuation. J. Intell. Robot. Syst. 74(3–4), 571–587 (2014)CrossRef
    4.Jafari, A. Variable Impedance Actuators Available from: http://​www.​birl.​ethz.​ch/​sssr2012/​on-linematerial/​AmirJafari.​pdf . Accessed 14 August 2012
    5.Grebenstein, M., Albu-Schäfer, A., Bahls, T., Chalon, M., Eiberger, O., Friedl, W., Gruber, R., Haddadin, S., Hagn, U., Haslinger, R., Höpner, H., Jörg, S., Nickl, M., Nothhelfer, A., Petit, F., Reill, J., Seitz, N., Wimbök, T., Wolf, S., Wühoff, T., Hirzinger, G.: The DLR hand arm system. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation, pp. 3175–3182. Shanghai, China (2011)
    6.Jafari, A., Tsagarakis, N.G., Caldwell, D.G.: A Novel intrinsically energy efficient actuator with adjustable stiffness (AwAS). IEEE/ASME Trans. Mech. 18(1), 288–297 (2013)CrossRef
    7.Tsagarakis, N.G., Sardellitti, I., Caldwell, D.G.: A New Variable Stiffness Actuator (CompAct-VSA): Design and Modelling In: Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.378–383. San Francisco, CA, USA (2011)
    8.Laffranchi, M., Tsagarakis, N.G., Caldwell, D.G.: A Compact Compliant Actuator (CompAct™) with Variable Physical Damping. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation, pp.4644–4650. Shanghai, China (2011)
    9.Kashiri, N., Laffranchi, M., Tsagarakis, N. G., Sardellitti, I., Caldwell, D.G.: Dynamic Modeling and Adaptable Control of the CompAct™Arm. In: Proceedings of the IEEE International Conference on Mechatronics, pp. 477–482. Vicenza, VI, Italy (2013)
    10.Mancini, M., Grioli, G., Catalano, M.G., Garabini, M., Bonomo, F., Bicchi, A.: Passive impedance control of a multi-DOF VSA-CubeBot manipulator. In: Proceedings of the 2012 IEEE International Conference on Robotics and Automation, pp.3335–3340. Saint Paul, Minnesota, USA (2012)
    11.Nam, K.-H., Kim, B.-S., Song, J.-B.: Compliant actuation of parallel-type variable stiffness actuator based on antagonistic actuation. J. Mech. Sci. Technol. 24(11), 2315–2321 (2010)CrossRef
    12.Kim, B.-S., Song, J.-B., Park, J.-J.: A serial-type dual actuator unit with planetary gear train: Basic design and applications. IEEE/ASME Trans. Mech. 15(1), 108–116 (2010)MathSciNet CrossRef
    13.Kim, B.-S., Song, J.-B.: Design and control of a variable stiffness actuator based on adjustable moment arm. IEEE Trans. Robot. 28(5), 1145–1151 (2012)CrossRef
    14.Kim, B.-S., Kim, Y.-L., Song, J.-B.: Preliminary Experiments on Robotic Assembly using a Hybrid-type Variable Stiffness Actuator. In: Proceedings of the 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM2011), pp. 1076–1080. Budapest, Hungary (2011)
    15.Groothuis, S.S., Rusticelli, G., Zucchelli, A., Stramigioli, S., Carloni, R.: The variable stiffness actuator vsaUT-II: Mechanical design, modeling, and identification. IEEE/ASME Trans. Mech. 19(2), 589–597 (2014)CrossRef
    16.Fumagalli, M., Barrett, E., Stramigioli, S., Carloni, R.: The mVSA-UT: a Miniaturized Differential Mechanism for a Continuous Rotational Variable Stiffness Actuator. In: Proceedings of the fourth IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 1943–1948. Roma, Italy (2012)
    17.Schiavi, R., Grioli, G., Sen, S., Bicchi, A.: VSA-II : a Novel Prototype of Variable Stiffness Actuator for Safe and Performing Robots Interacting with Humans. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2171–2176. Pasadena, CA, USA (2008)
    18.Catalano, M.G., Grioli, G., Bonomo, F., Schiavi, R., Bicchi, A.: VSA-HD: From the Enumeration Analysis to the Prototypical Implementation. In: Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3676–3681. Taipei, Taiwan (2010)
    19.Carloni, R., Visser, L.C., Stramigioli, S.: Variable stiffness actuators: A port-based power-flow analysis. IEEE Trans. Robot. 28(1), 1–11 (2012)CrossRef
    20.Flacco, F.: Modeling and control of robots with compliant actuation. PhD thesis. Università di Roma (2012)
    21.Petit, F.P.: Analysis and control of variable stiffness robots. PhD thesis. Technische Universität München (2014)
    22.Kilica, M., Yazicioglua, Y., Kurtulus, D.K.: Synthesis of a torsional spring mechanism with mechanically adjustable stiffness using wrapping cams. Mech. Mach. Theory 57, 27–39 (2012)CrossRef
    23.Schmit, N., Okada, M.: Design and realization of a non-circular cable spool to synthesize a nonlinear rotational spring. Adv. Robot. 26, 234–251 (2012)CrossRef
    24.Palli, G., Melchiorri, C., Wimböck, T., Grebenstein, M., Hirzinger, G.: Feedback linearization and simultaneous stiffness-position control of robots with antagonistic actuated joints. In: Proceedings of the 2007 IEEE International Conference on Robotics and Automation, pp. 4367–4382. Roma, Italy (2007)
    25.Palli, G., Melchiorri, C., Luca, A.D.: On the Feedback Linearization of Robots with Variable Joint Stiffness. In: Proceedings of the 2008 IEEE International Conference on Robotics and Automation, pp. 1753–1759. Pasadena, CA, USA (2008)
    26.Li, Z., Ge, S.S., Ming, A.: Adaptive robust motion/force control of holonomic constrained nonholonomic mobile manipulators. IEEE Trans. Syst. Man Cybern. Part B Cybern. 37(3), 607–617 (2007)CrossRef
    27.He, W., Chen, Y., Yin, Z.: Adaptive Neural Network Control of an Uncertain Robot with Full-State Constraints. IEEE Trans. Cybern. (2015). doi:10.​1109/​TCYB.​2015.​2411285 . in press
    28.He, W., Dong, Y., Sun, C.: Adaptive Neural Impedance Control of a Robotic Manipulator with Input Saturation. IEEE Trans. Syst., Man, Cybern., Syst. (2015). doi:10.​1109/​TSMC.​2015.​2429555 . in press
    29.Datong, Q.: Cylindrical spiral spring. In: Datong, Q., Liyang, X. (eds.) Spring design, pp 15–57. Chemical industry press, Beijing (2013)
  • 作者单位:Jishu Guo (1)
    Guohui Tian (1)

    1. School of Control Science and Engineering, Shandong University, 73 Jingshi Road, Jinan, China
  • 刊物类别:Engineering
  • 刊物主题:Automation and Robotics
    Electronic and Computer Engineering
    Artificial Intelligence and Robotics
    Mechanical Engineering
  • 出版者:Springer Netherlands
  • ISSN:1573-0409
文摘
This paper proposes four types of conceptual models of the 6-DOF variable stiffness robot arms based on the antagonistic driven joints (ADJs). For convenience of control, the equivalent quadratic torsion spring (EQTS) is selected as the elastic element of the ADJ. The relationship between the output stiffness and the angular displacement of the EQTS is fairly linear. The elastic actuating torque of the ADJ is related to the initial amount of deformation of the EQTS and the angular deflection of the ADJ. The output stiffness of the ADJ is a linear function of the initial amount of deformation of the EQTS. The convenience control of the torque and stiffness of the ADJ will be beneficial to reduce the complexity of the control strategy, and this feature is beneficial for real-time control. In the mechanical solutions, nine types of conceptual models of the EQTSs are presented, and nine types of conceptual models of the ADJs are demonstrated. The cam parameters and the spring parameters of the EQTSs are given. The cam profiles and the pressure angles of the cam-roller mechanisms are illustrated. The elastic actuating torque and output stiffness of the EQTSs and the ADJs are shown. The structure features and actuation characteristics of the EQTSs and the ADJs are compared and analyzed. Since the actuation requirements of the joints of the robot arm differ significantly, four types of conceptual models of the 6-DOF robot arms are assembled based on the different ADJs.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.