Enhanced Dielectric Properties and High-Temperature Microwave Absorption Performance of Zn-Doped Al2O3 Ceramic
详细信息    查看全文
  • 作者:Yuan Wang ; Fa Luo ; Ping Wei ; Wancheng Zhou ; Dongmei Zhu
  • 关键词:Al2O3 ceramic ; doping ; dielectric property ; high temperature ; microwave absorption
  • 刊名:Journal of Electronic Materials
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:44
  • 期:7
  • 页码:2353-2358
  • 全文大小:1,412 KB
  • 参考文献:1.K.J. Vinoy and R.M. Jha, Radar Absorbing Materials: From Theory to Design and Characterization (Norwell Boston: Kluwer Academic, 1996), pp. 10.
    2.W.S. Chin and D.G. Lee, Compos. Struct. 77, 457 (2007).View Article
    3.S. Vinayasree, M.A. Soloman, V. Sunny, P. Mohanan, P. Kurian, and M.R. Anantharaman, Compos. Sci. Technol. 82, 69 (2013).View Article
    4.A.N. Yusoff, M.H. Abdullah, S.H. Ahmad, S.F. Jusoh, A.A. Mansor, and S.A.A. Hamid, J. Appl. Phys. 92, 876 (2002).View Article
    5.G.R. Gordani, A. Ghasemi, and A. Sadi, J. Magn. Magn. Mater. 363, 49 (2014).View Article
    6.W.P. Li, L.Q. Zhu, J. Gu, and H.C. Liu, Compos. B 42, 626 (2011).View Article
    7.Z.J. Song, J.L. Xie, P.H. Zhou, X. Wang, T. Liu, and L.J. Deng, J. Alloys Compd. 551, 677 (2013).View Article
    8.J.B. Kim, S.K. Lee, and C.G. Kim, Compos. Sci. Technol. 68, 2909 (2008).View Article
    9.D. Micheli, C. Apollo, R. Pastore, and M. Marchetti, Compos. Sci. Technol. 70, 400 (2010).View Article
    10.D. Micheli, A. Vricella, R. Pastore, and M. Marchetti, Carbon 77, 756 (2014).View Article
    11.B. Wen, M.S. Cao, Z.L. Hou, W.L. Song, L. Zhang, and M.M. Lu, et al., Carbon 65, 124 (2013).View Article
    12.Y.G. Xu, L.M. Yuan, J. Cai, and D.Y. Zhang, J. Magn. Magn. Mater. 343, 239 (2013).View Article
    13.S. Martinovi?, M. Vlahovi?, T. Boljanac, and J. Majstorovi?, Compos. B 60, 400 (2014).View Article
    14.S. Mishra, R. Raniana, and K. Balasubramanian, J. Alloys Compd. 524, 83 (2012).View Article
    15.T. Shimizua, K. Matsuurab, H. Furuea, and K. Matsuzaka, J. Eur. Ceram. Soc. 33, 3429 (2013).View Article
    16.X.F. Zhang, K.S. Zhou, X. Wei, B.Y. Chen, J.B. Song, and M. Liu, Ceram. Int. 40, 12703 (2014).View Article
    17.A. Comitea, E.S. Cozzaa, G. Di Tannac, C. Mandolfinob, F. Milellac, and S. Vicinia, Prog. Org. Coat. (2014). doi:10.-016/?j.?porgcoat.-014.-0.-01 .
    18.G. Shanmugavelayutham and A. Kobayashi, Mater. Chem. Phys. 103, 283 (2007).View Article
    19.C. Gao and J.T. Yuan, J. Mater. Process. Technol. 211, 1719 (2011).View Article
    20.A. Krell, J. Klimke, and T. Hutzler, J. Eur. Ceram. Soc. 29, 275 (2009).View Article
    21.Y. Wang, F. Luo, L. Zhang, D.M. Zhu, and W.C. Zhou, Ceram. Int. 39, 8723 (2014).View Article
    22.D.L. Zhao, F. Luo, and W.C. Zhou, J. Alloys Compd. 490, 190 (2010).View Article
    23.Z.M. Li, W.C. Zhou, X.L. Su, F. Luo, Y.X. Huang, and C. Wang, J. Alloys Compd. 509, 973 (2011).View Article
    24.A. Ahmed, A. Ahmed, Z.A. Tailib, M.Z. Hussein, and A. Zakaria, J. Solid State Chem. 191, 271 (2012).View Article
    25.B. Khumpaitool and J. Khemprasit, Mater. Lett. 65, 1053 (2011).View Article
    26.K. Maca, V. Pouchly, K. Bodi?ová, P. ?uan?árek, and D. Galusek, J. Eur. Ceram. Soc. 34, 4363 (2014).View Article
    27.S.X. Zhang, J.B. Li, J. Cao, H.Z. Zhai, and B. Zhang, J. Eur. Ceram. Soc. 21, 2931 (2001).View Article
    28.Z.Z. Guan, Z.T. Zhang, and J.S. Jiao, Physical Properties of Inorganic Materials (Beijing: Tsinghua University Publishers, 1992), p. 330
    29.M. Tardío, R. González, R. Ramírez, and E. Alves, Methods Phys. Res. Sect. B 266, 2932 (2008).
    30.M. Tardío, I. Colera, R. Ramírez, and E. Alves, Methods Phys. Res. Sect. B 268, 2874 (2010).
    31.B. Savoini, M. Tardío, R. Ramírez, and E. Alves, Methods Phys. Res. Sect. B 286, 184 (2012).
  • 作者单位:Yuan Wang (1)
    Fa Luo (1)
    Ping Wei (1)
    Wancheng Zhou (1)
    Dongmei Zhu (1)

    1. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an, 710072, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Optical and Electronic Materials
    Characterization and Evaluation Materials
    Electronics, Microelectronics and Instrumentation
    Solid State Physics and Spectroscopy
  • 出版者:Springer Boston
  • ISSN:1543-186X
文摘
To improve the dielectric and microwave absorption properties of Al2O3 ceramic, Zn-doped Al2O3 ceramic was prepared by conventional ceramic processing. X-ray diffraction analysis confirmed that Zn atoms successfully entered the Al2O3 ceramic lattice and occupied Al sites. The complex permittivity increased with increasing Zn concentration, which is mainly attributed to the increase in charged vacancy defects and densification of the Al2O3 ceramic. In addition, the temperature-dependent complex permittivity of 3% Zn-doped Al2O3 ceramic was determined in the temperature range from 298?K to 873?K. Both the real and imaginary parts of the complex permittivity increased monotonically with increasing temperature, which can be ascribed to the shortened relaxation time and increasing electrical conductivity. The increased complex permittivity leads to a great improvement in microwave absorption. In particular, when the temperature is up to 873?K, the 3% Zn-doped Al2O3 ceramic exhibited the best absorption performance with a maximum peak (?2.1?dB) and broad effective absorption bandwidth (reflection loss less than ?0?dB from 9.3?GHz to 12.3?GHz). These results reveal that Zn-doped Al2O3 ceramic is a promising candidate for use as a kind of high-temperature microwave absorption material.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.