Electrochemistry and electrocatalysis of myoglobin on electrodeposited ZrO2 and graphene-modified carbon ionic liquid electrode
详细信息    查看全文
  • 作者:Wencheng Wang ; Xiaoqing Li ; Xiaohua Yu…
  • 关键词:Graphene ; Zirconia nanoparticle ; Myoglobin ; Direct electrochemistry ; Electrocatalysis
  • 刊名:Journal of the Iranian Chemical Society
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:13
  • 期:2
  • 页码:323-330
  • 全文大小:587 KB
  • 参考文献:1.F.A. Armstrong, H.A.O. Hill, N.J. Walton, Acc. Chem. Res. 21, 407 (1988)CrossRef
    2.J.F. Rusling, Acc. Chem. Res. 31, 363 (1998)CrossRef
    3.F.A. Armstrong, G.S. Wilson, Electrochim. Acta 45, 2623 (2000)CrossRef
    4.E. Lojou, P. Bianco, Electroanalysis 16, 1113 (2004)CrossRef
    5.Y. Liu, Y. Du, C.M. Li, Electroanalysis 25, 815 (2013)CrossRef
    6.C.Z. Zhu, G.H. Yang, H. Li, D. Du, Y.H. Lin, Anal. Chem. 87, 230 (2015)CrossRef
    7.D. Chen, H.B. Feng, J.H. Li, Chem. Rev. 112, 6027 (2012)CrossRef
    8.C. Li, G.Q. Shi, Adv. Mater. 26, 3992 (2014)CrossRef
    9.I.V. Pavlidis, M. Patila, U.T. Bornscheuer, D. Gournis, H. Stamatis, Trends Biotechnol. 32, 312 (2014)CrossRef
    10.Y.Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y.H. Lin, Electroanalysis 22, 2010 (1027)
    11.G. Jo, M. Choe, S. Lee, W. Park, Y.H. Kahng, T. Lee, Nanotechnology 23, 112001 (2012)CrossRef
    12.D. Chen, L.H. Tang, J.H. Li, Chem. Soc. Rev. 39, 3157 (2010)CrossRef
    13.V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Prog. Mater Sci. 56, 1178 (2011)CrossRef
    14.S. Bai, X.P. Shen, RSC Adv. 2, 64 (2012)CrossRef
    15.T.T. Baby, S.S. Aravind, T. Arockiadoss, R.B. Rakhi, S. Ramaprabhu, Sens. Actuators B: Chem. 145, 71 (2010)CrossRef
    16.W. Sun, Y.Q. Guo, X.M. Ju, Y.M. Zhang, X.Z. Wang, Z.F. Sun, Biosens. Bioelectron. 42, 207 (2013)CrossRef
    17.W. Sun, S.X. Gong, Y. Deng, T.T. Li, Y. Cheng, W.C. Wang, L. Wang, Thin Solid Films 562, 653 (2014)CrossRef
    18.S.J. Guo, D. Wen, Y.M. Zhai, S.J. Dong, E.K. Wang, ACS Nano 4, 3959 (2010)CrossRef
    19.F. Bellezza, A. Cipiciani, M.A. Quotadamo, Langmuir 21, 11099 (2005)CrossRef
    20.G.D. Liu, Y.H. Lin, Anal. Chem. 77, 5894 (2005)CrossRef
    21.D. Du, X.P. Ye, J.D. Zhang, Y. Zeng, H.Y. Tu, A.D. Zhang, D.L. Liu, Electrochem. Commun. 10, 686 (2008)CrossRef
    22.H. Pang, Q.Y. Lu, F. Gao, Chem. Commun. 47, 11772 (2011)CrossRef
    23.D. Du, J. Liu, X.Y. Zhang, X.L. Cui, Y.H. Lin, J. Mater. Chem. 21, 8032 (2011)CrossRef
    24.J. Yang, K. Jiao, T. Yang, Anal. Bioanal. Chem. 389, 913 (2007)CrossRef
    25.J.M. Gong, X.J. Miao, H.F. Wang, D.D. Song, Sens. Actuator B Chem. 102, 341 (2012)CrossRef
    26.W. Sun, X.Z. Wang, X.H. Sun, Y. Deng, J. Liu, B.X. Lei, Z.F. Sun, Biosens. Bioelectron. 44, 146 (2013)CrossRef
    27.S.Z. Zong, Y. Cao, Y.M. Zhou, H.X. Ju, Langmuir 22, 8915 (2006)CrossRef
    28.B.H. Liu, Y. Cao, D.D. Chen, J.L. Kong, J.Q. Deng, Anal. Chim. Acta 478, 59 (2003)CrossRef
    29.G. Zhao, J.J. Feng, J.J. Xu, H.Y. Chen, Electrochem. Commum. 7, 724 (2009)CrossRef
    30.K. Qiao, N.F. Hu, Bioelectrochemistry 75, 71 (2009)CrossRef
    31.P. Liang, M.Q. Deng, S.G. Cui, H. Chen, J.D. Qiu, Mater. Res. Bull. 45, 1855 (2010)CrossRef
    32.C.X. Ruan, T.T. Li, X.M. Ju, H.J. Liu, J. Lou, W.M. Gao, W. Sun, J. Solid State Electrochem. 16, 3661 (2012)CrossRef
    33.M. Opallo, A. Lesniewski, J. Electroanal. Chem. 656, 2 (2011)CrossRef
    34.N.N. Zhu, A.P. Zhang, Q.J. Wang, P.G. He, Y.Z. Fang, Anal. Chim. Acta 510, 163 (2004)CrossRef
    35.E. Laviron, J. Electroanal. Chem. 52, 355 (1974)CrossRef
    36.E. Laviron, J. Electroanal. Chem. 101, 19 (1979)CrossRef
    37.C.Y. Liu, J.M. Hu, Biosens. Bioelectron. 24, 2149 (2009)CrossRef
    38.W. Sun, X.Q. Li, Y. Wang, X. Li, C.Z. Zhao, K. Jiao, Bioelectrochemistry 75, 170 (2009)CrossRef
    39.W. Sun, L.F. Li, B.X. Lei, T.T. Li, X.M. Ju, X.Z. Wang, G.J. Li, Z.F. Sun, Mater. Sci. Eng., C 33, 1907 (2013)CrossRef
    40.G. Zhao, J.J. Xu, H.Y. Chen, Anal. Biochem. 350, 145 (2006)CrossRef
    41.A.J. Bard, L.R. Fulkner, Electrochemical Methods (Fundamentals and applications, Wiley, New York, 2001)
    42.S.F. Wang, T. Chen, Z.L. Zhang, X.C. Shen, Z.X. Lu, D.W. Pang, K.Y. Wong, Langmuir 21, 9260 (2005)CrossRef
    43.N.F. Hu, Pure Appl. Chem. 72, 1979 (2001)
    44.C.H. Fan, Y. Zhuang, G.X. Li, Q.J. Zhu, D.X. Zhu, Electroanalysis 12, 1156 (2000)CrossRef
    45.W. Sun, X.Q. Li, P. Qin, K. Jiao, J. Phys. Chem. 113, 11294 (2009)
    46.X.F. Wang, Z. You, H.L. Sha, Z.L. Sun, W. Sun, J. Solid State Electrochem. 18, 207 (2014)CrossRef
    47.P.L. He, N.F. Hu, G. Zhou, Biomacromolecules 3, 139 (2002)CrossRef
    48.J.M. Gong, X.Q. Lin, Microchem. J. 75, 51 (2003)CrossRef
    49.G.N. Li, T.T. Li, Y. Deng, Y. Cheng, F. Shi, W. Sun, Z.F. Sun, J. Solid State Electrochem. 17, 2333 (2013)CrossRef
    50.R.F. Gao, J.B. Zheng, Electrochem. Commun. 11, 1527 (2009)CrossRef
    51.R.A. Kamin, G.S. Wilson, Anal. Chem. 52, 1198 (1980)CrossRef
  • 作者单位:Wencheng Wang (1)
    Xiaoqing Li (2)
    Xiaohua Yu (2)
    Lijun Yan (1)
    Bingxin Lei (1)
    Pan Li (1)
    Changxing Chen (1)
    Wei Sun (1)

    1. College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
    2. College of Acumox and Tuina, Shangdong University of Traditional Chinese Medicine, Jinan, 250355, China
  • 刊物主题:Analytical Chemistry; Inorganic Chemistry; Physical Chemistry; Biochemistry, general; Organic Chemistry;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1735-2428
文摘
In this paper, an electrodeposited zirconia (ZrO2) nanoparticle and graphene (GR) nanosheet-modified carbon ionic liquid electrode (CILE) was fabricated to get a modified electrode that denoted as ZrO2/GR/CILE, which was further used for the immobilization of myoglobin (Mb). The performances of ZrO2/GR/CILE were checked by scanning electron microscopy and electrochemical methods, and the results indicated the formation of nanocomposite on the electrode surface with increased surface area. Direct electrochemistry of Mb was realized on the modified electrode with a pair of well-defined quasi-reversible redox peaks appeared, which was ascribed to the typical electrochemical behaviors of Mb Fe(III)/Fe(II) redox couples. Therefore, the presence of ZrO2/GR on the electrode could provide a specific interface for accelerating the electron transfer of Mb with the underlying electrode. Electrochemical behaviors of Mb were carefully investigated with the electrochemical parameters calculated. Under the selected conditions, the Mb-modified electrode exhibited excellent electrocatalytic activity to the reduction of trichloroacetic acid in the concentration range from 0.4 to 29.0 mmol L−1 with a detection limit of 0.13 mmol L−1 (3σ). Keywords Graphene Zirconia nanoparticle Myoglobin Direct electrochemistry Electrocatalysis
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.