Design and synthesis of porous non-noble metal oxides for catalytic removal of VOCs
详细信息    查看全文
  • 作者:Wenxiang Tang ; Gang Liu ; Dongyan Li ; Haidi Liu ; Xiaofeng Wu&#8230
  • 关键词:VOCs ; catalytic oxidation ; non ; noble metal oxides ; structure ; activity relationships ; synthetic methods
  • 刊名:SCIENCE CHINA Chemistry
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:58
  • 期:9
  • 页码:1359-1366
  • 全文大小:895 KB
  • 参考文献:1.Altshuller AP. Review: natural volatile organic substances and their effect on air quality in the United States. Atmos Environ, 1983, 17: 2131鈥?165CrossRef
    2.Kesselmeier J, Staudt M. Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem, 1999, 33: 23鈥?8CrossRef
    3.Jones AP. Indoor air quality and health. Atmos Environ, 1999, 33: 4535鈥?564CrossRef
    4.Wolkoff P, Nielsen GD. Organic compounds in indoor air鈥攖heir relevance for perceived indoor air quality? Atmos Environ, 2001, 35: 4407鈥?417CrossRef
    5.Cometto-Mu帽iz JE, Cain WS, Abraham MH. Detection of single and mixed VOCs by smell and by sensory irritation. Indoor Air, 2004, 14: 108鈥?17CrossRef
    6.Lahousse C, Bernier A, Grange P, Delmon B, Papaefthimiou P, Ioannides T, Verykios X. Evaluation of 纬-MnO2 as a VOC removal catalyst: comparison with a noble metal catalyst. J Catal, 1998, 178: 214鈥?25CrossRef
    7.Leson G, Winer AM. Biofiltration: an innovative air pollution control technology for VOC emissions. J Air Waste Manage, 1991, 41: 1045鈥?054CrossRef
    8.Foster KL, Fuerman RG, Economy J, Larson SM, Rood MJ. Adsorption characteristics of trace volatile organic compounds in gas streams onto activated carbon fibers. Chem Mater, 1992, 4: 1068鈥?073CrossRef
    9.Everaert K, Baeyens J. Catalytic combustion of volatile organic compounds. J Hazard Mater, 2004, 109: 113鈥?39CrossRef
    10.Spivey JJ. Complete catalytic oxidation of volatile organics. Ind Eng Chem Res, 1987, 26: 2165鈥?180CrossRef
    11.Kim HS, Kim TW, Koh HL, Lee SH, Min BR. Complete benzene oxidation over Pt-Pd bimetal catalyst supported on 纬-alumina: influence of Pt-Pd ratio on the catalytic activity. Appl Catal A, 2005, 280: 125鈥?31CrossRef
    12.Ojala S, Pitkaaho S, Laitinen T, Koivikko NN, Brahmi R, Gaalova J, Matejova L, Kucherov A, Paivarinta S, Hirschmann C, Nevanpera T, Riihimaki M, Pirila M, Keiski RL. Catalysis in VOC abatement. Top Catal, 2011, 54: 1224鈥?256CrossRef
    13.Yang JS, Jung WY, Lee GD, Park SS, Jeong ED, Kim HG, Hong SS. Catalytic combustion of benzene over metal oxides supported on SBA-15. J Ind Eng Chem, 2008, 14: 779鈥?84CrossRef
    14.Li TY, Chiang SJ, Liaw BJ, Chen YZ. Catalytic oxidation of benzene over CuO/Ce1-xMnxO2 catalysts. Appl Catal B, 2011, 103: 143鈥?48CrossRef
    15.Li WB, Wang JX, Gong H. Catalytic combustion of VOCs on nonnoble metal catalysts. Catal Today, 2009, 148: 81鈥?7CrossRef
    16.Kim SC. The catalytic oxidation of aromatic hydrocarbons over supported metal oxide. J Hazard Mater, 2002, 91: 285鈥?99CrossRef
    17.Bertinchamps F, Gregoire C, Gaigneaux EM. Systematic investigation of supported transition metal oxide based formulations for the catalytic oxidative elimination of (chloro)-aromatics鈥擯art I: identification of the optimal main active phases and supports. Appl Catal B, 2006, 66: 1鈥?CrossRef
    18.Liotta LF, Wu H, Pantaleo G, Venezia AM. Co3O4 nanocrystals and Co3O4-MOx binary oxides for CO, CH4 and VOC oxidation at low temperatures: a review. Catal Sci Technol, 2013, 3: 3085鈥?102CrossRef
    19.Li D, Wu X, Chen Y. Synthesis of hierarchical hollow MnO2 microspheres and potential application in abatement of VOCs. J Phys Chem C, 2013, 117: 11040鈥?1046CrossRef
    20.Wang F, Dai H, Deng J, Bai G, Ji K, Liu Y. Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal of toluene. Environ Sci Technol, 2012, 46: 4034鈥?041CrossRef
    21.Liang S, Teng F, Bulgan G, Zong R, Zhu Y. Effect of phase structure of MnO2 nanorod catalyst on the activity for COoxidation. J Phys Chem C, 2008, 112: 5307鈥?315CrossRef
    22.Li Y, Shen W. Morphology-dependent nanocatalysis on metal oxides. Sci China Chem, 2012, 55: 2485鈥?496CrossRef
    23.Tang W, Wu X, Li S, Shan X, Liu G, Chen Y. Co-nanocasting synthesis of mesoporous Cu-Mn composite oxides and their promoted catalytic activities for gaseous benzene removal. Appl Catal B, 2015, 162: 110鈥?21CrossRef
    24.Tang WX, Li WH, Li DY, Liu G, Wu XF, Chen YF. Synergistic effects in porous Mn-Co mixed oxide nanorods enhance catalytic deep oxidation of benzene. Catal Lett, 2014, 144: 1900鈥?910CrossRef
    25.Shi J. On the synergetic catalytic effect in heterogeneous nanocomposite catalysts. Chem Rev, 2013, 113: 2139鈥?181CrossRef
    26.Yang Y, Huang J, Wang SW, Deng SB, Wang B, Yu G. Catalytic removal of gaseous unintentional POPs on manganese oxide octahedral molecular sieves. Appl Catal B, 2013, 142: 568鈥?78CrossRef
    27.Doornkamp C, Ponec V. The universal character of the Mars and van Krevelen mechanism. J Mol Catal A-Chem, 2000, 162: 19鈥?2CrossRef
    28.Shi FJ, Wang F, Dai HX, Dai JX, Deng JG, Liu YX, Bai GM, Ji KM, Au CT. Rod-, flower-, and dumbbell-like MnO2: highly active catalysts for the combustion of toluene. Appl Catal A-Gen, 2012, 433: 206鈥?13CrossRef
    29.Fei ZY, Lu P, Feng XZ, Sun B, Ji WJ. Geometrical effect of CuO nanostructures on catalytic benzene combustion. Catal Sci Technol, 2012, 2: 1705鈥?710CrossRef
    30.Bai B, Arandiyan H, Li J. Comparison of the performance for oxidation of formaldehyde on nano-Co3O4, 2D-Co3O4, and 3D-Co3O4 catalysts. Appl Catal B, 2013, 142鈥?43: 677鈥?83CrossRef
    31.Wang Z, Wang Q, Liao YC, Shen GL, Gong XZ, Han N, Liu HD, Chen YF. Comparative study of CeO2 and doped CeO2 with tailored oxygen vacancies for COoxidation. ChemPhysChem, 2011, 12: 2763鈥?770CrossRef
    32.Mai HX, Sun LD, Zhang YW, Si R, Feng W, Zhang HP, Liu HC, Yan CH. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J Phys Chem B, 2005, 109: 24380鈥?4385CrossRef
    33.Xie XW, Li Y, Liu ZQ, Haruta M, Shen WJ. Low-temperature oxidation of COcatalysed by Co3O4 nanorods. Nature, 2009, 458: 746鈥?49CrossRef
    34.Tang WX, Wu XF, Li DY, Wang Z, Liu G, Liu HD, Chen YF. Oxalate route for promoting activity of manganese oxide catalysts in total VOCs鈥?oxidation: effect of calcination temperature and preparation method. J Mater Chem A, 2014, 2: 2544鈥?554CrossRef
    35.Xia Y, Dai H, Jiang H, Zhang L. Three-dimensional ordered mesoporous cobalt oxides: highly active catalysts for the oxidation of toluene and methanol. Catal Commun, 2010, 11: 1171鈥?175CrossRef
    36.Bai G, Dai H, Deng J, Liu Y, Wang F, Zhao Z, Qiu W, Au CT. Porous Co3O4 nanowires and nanorods: highly active catalysts for the combustion of toluene. Appl Catal A: Gen, 2013, 450: 42鈥?9CrossRef
    37.Xia YS, Dai HX, Jiang HY, Deng JG, He H, Au CT. Mesoporous chromia with ordered three-dimensional structures for the complete oxidation of toluene and ethyl acetate. Environ Sci Technol, 2009, 43: 8355鈥?360CrossRef
    38.Bai G, Dai H, Deng J, Liu Y, Ji K. Porous NiO nanoflowers and nanourchins: highly active catalysts for toluene combustion. Catal Commun, 2012, 27: 148鈥?53CrossRef
    39.Ke Y, Lai Y. Comparison of the catalytic benzene oxidation activity of mesoporous ceria prepared via hard-template and soft-template. Microporous Mesoporous Mat, 2014, 198: 256鈥?62CrossRef
    40.Zhang J, Guo J, Liu W, Wang S, Xie A, Liu X, Wang J, Yang Y. Facile preparation of Mn+-doped (M=Cu, Co, Ni, Mn) hierarchically mesoporous CeO2 nanoparticles with enhanced catalytic activity for COoxidation. Eur J Inorg Chem, 2015, 2015: 969鈥?76CrossRef
    41.Han N, Chai LY, Wang Q, Tian YJ, Deng PY, Chen YF. Evaluating the doping effect of Fe, Ti and Sn on gas sensing property of ZnO. Sensor Actuat B-Chem, 2010, 147: 525鈥?30CrossRef
    42.Graciani J, Mudiyanselage K, Xu F, Baber AE, Evans J, Senanayake SD, Stacchiola DJ, Liu P, Hrbek J, Sanz JF, Rodriguez JA. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science, 2014, 345: 546鈥?50CrossRef
    43.Zhu JJ, Li HL, Zhong LY, Xiao P, Xu XL, Yang XG, Zhao Z, Li JL. Perovskite oxides: preparation, characterizations, and applications in heterogeneous catalysis. Acs Catal, 2014, 4: 2917鈥?940CrossRef
    44.Patzke GR, Zhou Y, Kontic R, Conrad F. Oxide nanomaterials: synthetic developments, mechanistic studies, and technological innovations. Angew Chem Int Ed, 2011, 50: 826鈥?59CrossRef
    45.Li D, Shen G, Tang W, Liu H, Chen Y. Large-scale synthesis of hierarchical MnO2 for benzene catalytic oxidation. Particuology, 2014, 14: 71鈥?5CrossRef
    46.Tian ZY, Ngamou PHT, Vannier V, Kohse-Hoinghaus K, Bahlawane N. Catalytic oxidation of VOCs over mixed Co-Mn oxides. Appl Catal B, 2012, 117: 125鈥?34CrossRef
    47.Liu G, Yue RL, Jia Y, Ni Y, Yang J, Liu HD, Wang Z, Wu XF, Chen YF. Catalytic oxidation of benzene over Ce-Mn oxides synthesized by flame spray pyrolysis. Particuology, 2013, 11: 454鈥?59CrossRef
    48.Delimaris D, Ioannides T. VOC oxidation over CuO-CeO2 catalysts prepared by a combustion method. Appl Catal B, 2009, 89: 295鈥?02CrossRef
    49.Delimaris D, Ioannides T. VOC oxidation over MnOx-CeO2 catalysts prepared by a combustion method. Appl Catal B, 2008, 84: 303鈥?12CrossRef
    50.Liu G, Yang K, Li JQ, Tang WX, Xu JB, Liu HD, Yue RL, Chen YF. Surface diffusion of Pt clusters in/on SiO2 matrix at elevated temperatures and their improved catalytic activities in benzene oxidation. J Phys Chem C, 2014, 118: 22719鈥?2729CrossRef
    51.Poyraz AS, Kuo CH, Biswas S, King鈥檕ndu CK, Suib SL. A general approach to crystalline and monomodal pore size mesoporous materials. Nat Commun, 2013, 4: 2952CrossRef
    52.Arandiyan H, Dai H, Deng J, Liu Y, Bai B, Wang Y, Li X, Xie S, Li J. Three-dimensionally ordered macroporous La0.6Sr0.4MnO3 with high surface areas: active catalysts for the combustion of methane. J Catal, 2013, 307: 327鈥?39CrossRef
    53.Chen CQ, Yu Y, Li W, Cao CY, Li P, Dou ZF, Song WG. Mesoporous Ce1-xZrxO2 solid solution nanofibers as high efficiency catalysts for the catalytic combustion of VOCs. J Mater Chem, 2011, 21: 12836鈥?2841CrossRef
    54.Hou JT, Li YZ, Liu LL, Ren L, Zhao XJ. Effect of giant oxygen vacancy defects on the catalytic oxidation of OMS-2 nanorods. J Mater Chem A, 2013, 1: 6736鈥?741CrossRef
    55.Li SD, Wang HS, Li WM, Wu XF, Tang WX, Chen YF. Effect of Cu substitution on promoted benzene oxidation over porous CuCo-based catalysts derived from layered double hydroxide with resistance of water vapor. Appl Catal B, 2015, 166: 260鈥?69CrossRef
    56.Einaga H, Hyodo S, Teraoka Y. Complete oxidation of benzene over perovskite-type oxide catalysts. Top Catal, 2010, 53: 629鈥?34CrossRef
    57.Tang WX, Wu XF, Li SD, Li WH, Chen YF. Porous Mn-Co mixed oxide nanorod as a novel catalyst with enhanced catalytic activity for removal of VOCs. Catal Commun, 2014, 56: 134鈥?38CrossRef
  • 作者单位:Wenxiang Tang (1)
    Gang Liu (1)
    Dongyan Li (1)
    Haidi Liu (1)
    Xiaofeng Wu (1)
    Ning Han (1)
    Yunfa Chen (1)

    1. State Key Laboratory of Multiphase Complex Systems; Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Chinese Library of Science
    Chemistry
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1870
文摘
The design and synthesis of highly active non-noble metal oxide catalysts, such as transition- and rare-earth-metal oxides, have attracted significant attention because of their high efficiency and low cost and the resultant potential applications for the degradation of volatile organic compounds (VOCs). The structure-activity relationships have been well-studied and used to facilitate design of the structure and composition of highly active catalysts. Recently, non-noble metal oxides with porous structures have been used as catalysts for deep oxidation of VOCs, such as aromatic hydrocarbons, aliphatic compounds, aldehydes, and alcohols, with comparable activities to their noble metal counterparts. This review summarizes the growing literature regarding the use of porous metal oxides for the catalytic removal of VOCs, with emphasis on design of the composition and structure and typical synthetic technologies. Keywords VOCs catalytic oxidation non-noble metal oxides structure-activity relationships synthetic methods
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.