Scalable synthesis and superior performance of TiO2-reduced graphene oxide composite anode for sodium-ion batteries
详细信息    查看全文
  • 作者:Conglong Fu ; Taiqiang Chen ; Wei Qin ; Ting Lu ; Zhuo Sun ; Xiaohua Xie ; Likun Pan
  • 关键词:TiO2 ; reduced graphene oxide ; Sol ; gel process ; Sodium ; ion battery ; Anode material
  • 刊名:Ionics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:22
  • 期:4
  • 页码:555-562
  • 全文大小:781 KB
  • 参考文献:1.Zhou X, Wan L-J, Guo Y-G (2013) Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv Mater 25(15):2152–2157. doi:10.​1002/​adma.​201300071 CrossRef
    2.Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367CrossRef
    3.Xu Y, Zhu Y, Liu Y, Wang C (2013) Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries. Adv Energy Mater 3(1):128–133. doi:10.​1002/​aenm.​201200346 CrossRef
    4.Pan A, Wu HB, Yu L, Lou XW (2013) Template-free synthesis of VO2 hollow microspheres with various interiors and their conversion into V2O5 for lithium-ion batteries. Angew Chem 125(8):2282–2286. doi:10.​1002/​ange.​201209535 CrossRef
    5.Pan H, Hu Y-S, Chen L (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energ Environ Sci 6(8):2338–2360. doi:10.​1039/​c3ee40847g CrossRef
    6.Wenzel S, Hara T, Janek J, Adelhelm P (2011) Room-temperature sodium-ion batteries: improving the rate capability of carbon anode materials by templating strategies. Energ Environ Sci 4(9):3342–3345. doi:10.​1039/​c1ee01744f CrossRef
    7.Sun Y, Zhao L, Pan H, Lu X, Gu L, Hu Y-S, Li H, Armand M, Ikuhara Y, Chen L, Huang X (2013) Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat Commun 4:1870. doi:10.​1038/​ncomms2878 CrossRef
    8.Levi E, Gofer Y, Aurbach D (2010) On the way to rechargeable mg batteries: the challenge of new cathode materials. Chem Mater 22(3):860–868. doi:10.​1021/​cm9016497 CrossRef
    9.Fei H, Feng Z, Liu X (2014) Novel sodium bismuth sulfide nanostructures: a promising anode materials for sodium-ion batteries with high capacity. Ionics 21(7):1967–1972. doi:10.​1007/​s11581-014-1356-0 CrossRef
    10.Zhu H, Jia Z, Chen Y, Weadock N, Wan J, Vaaland O, Han X, Li T, Hu L (2013) Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Lett 13(7):3093–3100. doi:10.​1021/​nl400998t CrossRef
    11.Bi Z, Paranthaman MP, Menchhofer PA, Dehoff RR, Bridges CA, Chi M, Guo B, Sun X-G, Dai S (2013) Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries. J Power Sources 222:461–466. doi:10.​1016/​j.​jpowsour.​2012.​09.​019 CrossRef
    12.Hariharan S, Saravanan K, Ramar V, Balaya P (2013) A rationally designed dual role anode material for lithium-ion and sodium-ion batteries: case study of eco-friendly Fe3O4. Phys Chem Chem Phys 15(8):2945–2953. doi:10.​1039/​c2cp44572g CrossRef
    13.Zhu C, Mu X, van Aken PA, Yu Y, Maier J (2014) Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew Chem Int Edit 53(8):2152–2156. doi:10.​1002/​anie.​201308354 CrossRef
    14.Komaba S, Mikumo T, Yabuuchi N, Ogata A, Yoshida H, Yamada Y (2010) Electrochemical insertion of Li and Na ions into nanocrystalline Fe3O4 and α‐Fe2O3 for rechargeable batteries. J Electrochem Soc 157(1):A60–A65. doi:10.​1149/​1.​3254160 CrossRef
    15.Alcántara R, Lavela P, Ortiz GF, Tirado JL, Menéndez R, Santamaría R, Jiménez-Mateos JM (2003) Electrochemical, textural and microstructural effects of mechanical grinding on graphitized petroleum coke for lithium and sodium batteries. Carbon 41(15):3003–3013. doi:10.​1016/​S0008-6223(03)00432-9 CrossRef
    16.Ponrouch A, Goñi AR, Palacín MR (2013) High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte. Electrochem Commun 27:85–88. doi:10.​1016/​j.​elecom.​2012.​10.​038 CrossRef
    17.Stevens DA, Dahn JR (2001) The mechanisms of lithium and sodium insertion in carbon materials. J Electrochem Soc 148(8):A803–A811. doi:10.​1149/​1.​1379565 CrossRef
    18.Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, Ogata A, Gotoh K, Fujiwara K (2011) Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-Ion batteries. Adv Funct Mater 21(20):3859–3867. doi:10.​1002/​adfm.​201100854 CrossRef
    19.Qian J, Chen Y, Wu L, Cao Y, Ai X, Yang H (2012) High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem Commun 48(56):7070–7072. doi:10.​1039/​c2cc32730a CrossRef
    20.Datta MK, Epur R, Saha P, Kadakia K, Park SK, Kumta PN (2013) Tin and graphite based nanocomposites: potential anode for sodium ion batteries. J Power Sources 225:316–322. doi:10.​1016/​j.​jpowsour.​2012.​10.​014 CrossRef
    21.Liu X, Chen T, Chu H, Niu L, Sun Z, Pan L, Sun CQ (2015) Fe2O3-reduced graphene oxide composites synthesized via microwave-assisted method for sodium ion batteries. Electrochim Acta 166:12–16. doi:10.​1016/​j.​electacta.​2015.​03.​081 CrossRef
    22.Qin W, Chen T, Pan L, Niu L, Hu B, Li D, Li J, Sun Z (2015) MoS2-reduced graphene oxide composites via microwave assisted synthesis for sodium ion battery anode with improved capacity and cycling performance. Electrochim Acta 153:55–61. doi:10.​1016/​j.​electacta.​2014.​11.​034 CrossRef
    23.Yan Z, Liu L, Shu H, Yang X, Wang H, Tan J, Zhou Q, Huang Z, Wang X (2015) A tightly integrated sodium titanate-carbon composite as an anode material for rechargeable sodium ion batteries. J Power Sources 274:8–14. doi:10.​1016/​j.​jpowsour.​2014.​10.​045 CrossRef
    24.Shirpour M, Cabana J, Doeff M (2013) New materials based on a layered sodium titanate for dual electrochemical Na and Li intercalation systems. Energ Environ Sci 6(8):2538–2547. doi:10.​1039/​c3ee41037d CrossRef
    25.Ge Y, Jiang H, Zhu J, Lu Y, Chen C, Hu Y, Qiu Y, Zhang X (2015) High cyclability of carbon-coated TiO2 nanoparticles as anode for sodium-ion batteries. ElectrochimActa 157:142–148. doi:10.​1016/​j.​electacta.​2015.​01.​086 CrossRef
    26.Xiong H, Slater MD, Balasubramanian M, Johnson CS, Rajh T (2011) Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J Phys Chem Lett 2(20):2560–2565. doi:10.​1021/​jz2012066 CrossRef
    27.Ni'mah YL, Cheng M-Y, Cheng JH, Rick J, Hwang B-J (2015) Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries. J Power Sources 278:375–381. doi:10.​1016/​j.​jpowsour.​2014.​11.​047 CrossRef
    28.Yang Y, Ji X, Jing M, Hou H, Zhu Y, Fang L, Yang X, Chen Q, Banks CE (2015) Carbon dots supported upon N-doped TiO2 nanorods applied into sodium and lithium ion batteries. J Mater Chem A 10:5648–5655CrossRef
    29.Shirpour M, Cabana J, Doeff M (2014) Lepidocrocite-type layered titanate structures: new lithium and sodium ion intercalation anode materials. Chem Mater 26(8):2502–2512CrossRef
    30.Kim K-T, Ali G, Chung KY, Yoon CS, Yashiro H, Sun Y-K, Lu J, Amine K, Myung S-T (2014) Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. Nano Lett 14(2):416–422CrossRef
    31.Huang J, Yuan D, Zhang H, Cao Y, Li G, Yang H, Gao X (2013) Electrochemical sodium storage of TiO2 (B) nanotubes for sodium ion batteries. RSC Adv 3(31):12593–12597CrossRef
    32.Perez-Flores JC, Baehtz C, Kuhn A, Garcia-Alvarado F (2014) Hollandite-type TiO2: a new negative electrode material for sodium-ion batteries. J Mater Chem A 2(6):1825–1833. doi:10.​1039/​c3ta13394j CrossRef
    33.Lee J, Chen Y-M, Zhu Y, Vogt BD (2014) Fabrication of porous carbon/TiO2 composites through polymerization-induced phase separation and use as an anode for Na-ion batteries. ACS Appl Mater Inter 6(23):21011–21018CrossRef
    34.Oh S-M, Hwang J-Y, Yoon CS, Lu J, Amine K, Belharouak I, Sun Y-K (2014) High electrochemical performances of microsphere C-TiO2 anode for sodium-ion battery. ACS Appl Mater Inter 6(14):11295–11301CrossRef
    35.Ohata Y, Yun J, Miyamae R, Kim T, Kim J, Seo M-H, Kitajo A, Miyawaki J, Okada S, Yoon S-H (2014) TiO2-entrained tubular carbon nanofiber and its electrochemical properties in the rechargeable Na-ion battery system. Appl Therm Eng 72(2):309–314CrossRef
    36.Cha HA, Jeong HM, Kang JK (2014) Nitrogen-doped open pore channeled graphene facilitating electrochemical performance of TiO2 nanoparticles as an anode material for sodium ion batteries. J Mate Chem A 2(15):5182–5186CrossRef
    37.Liu Y, Cheng Z, Sun H, Arandiyan H, Li J, Ahmad M (2015) Mesoporous Co3O4 sheets/3D graphene networks nanohybrids for high-performance sodium-ion battery anode. J Power Sources 273:878–884CrossRef
    38.Li J, Liu X, Pan L, Qin W, Chen T, Sun Z (2014) MoS2—reduced graphene oxide composites synthesized via a microwave-assisted method for visible-light photocatalytic degradation of methylene blue. RSC Adv 4(19):9647–9651CrossRef
    39.Lu T, Zhang Y, Li H, Pan L, Li Y, Sun Z (2010) Electrochemical behaviors of graphene–ZnO and graphene–SnO2 composite films for supercapacitors. Electrochim Acta 55(13):4170–4173. doi:10.​1016/​j.​electacta.​2010.​02.​095 CrossRef
    40.Zhu G, Xu T, Lv T, Pan L, Zhao Q, Sun Z (2011) Graphene-incorporated nanocrystalline TiO2 films for CdS quantum dot-sensitized solar cells. J ElectroanalChem 650(2):248–251CrossRef
    41.Lu T, Pan L, Nie C, Zhao Z, Sun Z (2011) A green and fast way for reduction of graphene oxide in acidic aqueous solution via microwave assistance. Phys Status Solidi (a) 208(10):2325–2327CrossRef
    42.Liu Y, Cheng Z, Sun H, Arandiyan H, Li J, Ahmad M (2015) Mesoporous Co3O4 sheets/3D graphene networks nanohybrids for high-performance sodium-ion battery anode. JPower Sources 273:878–884CrossRef
    43.Xu Y, Lotfabad EM, Wang H, Farbod B, Xu Z, Kohandehghan A, Mitlin D (2013) Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries. Chem Commun 49(79):8973–8975CrossRef
    44.Wu L, Buchholz D, Bresser D, Chagas LG, Passerini S (2014) Anatase TiO2 nanoparticles for high power sodium-ion anodes. J Power Sources 251:379–385CrossRef
    45.Yan D, Yu C, Bai Y, Zhang W, Chen T, Hu B, Sun Z, Pan L (2015) Sn-doped TiO2 nanotubes as superior anode materials for sodium ion batteries. Chem Commun 51(39):8261–8264CrossRef
  • 作者单位:Conglong Fu (1)
    Taiqiang Chen (1)
    Wei Qin (1)
    Ting Lu (1)
    Zhuo Sun (1)
    Xiaohua Xie (2)
    Likun Pan (1)

    1. Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
    2. Research Center for New Energy Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Electrochemistry
    Materials Science
    Physical Chemistry
    Condensed Matter
    Renewable Energy Sources
    Electrical Power Generation and Transmission
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1862-0760
文摘
TiO2-reduced graphene oxide (RGO) composite was synthesized via a sol-gel process and investigated as an anode material for sodium-ion batteries (SIBs). A remarkable improvement in sodium ion storage with a reversible capacity of 227 mAh g−1 after 50 cycles at 50 mA g−1 is achieved, compared to that (33 mAh g−1) for TiO2. The enhanced electrochemical performance of TiO2-RGO composite is attributed to the larger specific surface area and better electrical conductivity of TiO2-RGO composite. The excellent performance of TiO2-RGO composite enables it a potential electrode material for SIBs.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.