Small-scale stress fluctuations in borehole breakouts and their implication in identifying potential active faults around the seismogenic megasplay fault, Nankai Trough, SW Japan
详细信息    查看全文
  • 作者:Yasuhiro Yamada ; Jun Shibanuma
  • 关键词:Borehole breakout ; Stress rotation ; Active fault identification ; Nankai Trough ; IODP
  • 刊名:Earth, Planets and Space
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:67
  • 期:1
  • 全文大小:1275KB
  • 参考文献:Barton CA, Zoback MD (1994) Stress perturbations associated with active faults penetrated by boreholes: possible evidence for near-complete stress drop and a new technique for stress magnitude measurements. J Geophys Res 99:9373鈥?390CrossRef
    Camac BA, Hunt S, Boult PJ (2006) Local rotations in borehole breakouts鈥攐bserved and modeled stress field rotations and their implications for the petroleum industry. Int J Geomech 6:399鈥?10CrossRef
    Chang C, Zoback MD, Khaksar A (2006) Empirical relations between rock strength and physical properties in sedimentary rocks. J Petrol Sci Eng 51:223鈥?37, doi; 10.1016/j.petrol.2006.01.003CrossRef
    Chang C, McNeill LC, Moore JC, Lin W, Conin M, Yamada Y (2010) In situ stress state in the Nankai accretionary wedge estimated from borehole wall failures. Geochem Geophys Geosyst 11:Q0AD04, doi:10.1029/2010GC003261CrossRef
    Colmenares LB, Zoback MD (2002) A statistical evaluation of rock failure criteria constrained by polyaxial test data for five different rocks. Int J Rock Mech Mining Sci 39:695鈥?29CrossRef
    Finkbeiner T, Barton CA, Zoback MD (1997) Relationships among in-situ stress, fractures and faults, and fluid flow: Monterey formation, Santa Maria Basin, California. AAPG Bull 81:1975鈥?999
    Jaeger JC, Cook NGW (1979) Fundamentals of rock mechanics, 2nd edn. Chapman and Hall, New York
    Kimura G, Moore GF, Strasser M, Screaton E, Curewitz D, Streiff C, Tobin H (2011) Spatial and temporal evolution of the megasplay fault in the Nankai Trough. Geochem Geophys Geosyst 12:Q0A008, doi:10.1029/2010GC003335CrossRef
    Kinoshita M, Tobin H, Ashi J, Kimura G, Lallement S, Screaton EJ, Curewitz D, Masago H, Moe KT, Expedition 314/315/316 Scientists (2009) Proc. Integrated Ocean Drilling Program 314/315/316. Integrated Ocean Drilling Program Management International, Inc, Washington, DC
    Lin W, Yeh EC, Hung JH, Haimson B, Hirono T (2010) Localized rotation of principal stress around faults and fractures determined from borehole breakouts in hole B to the Taiwan Chelungpu-fault Drilling Project (TCDP). Tectonophysics 482(1鈥?):82鈥?1CrossRef
    Miyazaki S, Heki K (2001) Crustal velocity field of southwest Japan: subduction and arc鈥恆rc collision. J Geophys Res 106:4305鈥?326, doi:10.1029/2000JB900312CrossRef
    Moore GF, Bangs NL, Taira A, Kuramoto S, Pangborn E, Tobin HJ (2007) Three鈥恉imensional splay fault geometry and implications for tsunami generation. Science 318:1128鈥?131, doi:10.1126/science.1147195CrossRef
    Moore JC, Chang C, McNeill L, Thu MK, Yamada Y, Huftile G (2011) Growth of borehole breakouts with time after drilling: implications for state of stress, NanTroSEIZE transect, SW Japan. Geochem Geophys Geosyst 12:Q04D09, doi:10.1029/2010GC003417
    Park J-O, Kodaira S (2012) Seismic reflection and bathymetric evidences for the Nankai earthquake rupture across a stable segment-boundary. Earth Planets Space 64:299鈥?03, doi:10.5047/eps.2011.10.006CrossRef
    Seno T, Stein S, Gripp AE (1993) A model for the motion of the Philippine Sea plate consistent with NUVEL-1 and geological data. J Geophys Res 98:17941鈥?7948, doi: 10.1029/93JB00782CrossRef
    Shamir G, Zoback MD (1992) Stress orientation profile to 3.5聽km depth near the San Andreas Fault at Cajon Pass, California. J Geophys Res 97:5059鈥?080CrossRef
    Sibson RH (1995) Selective fault reactivation during basin inversion: potential for fluid redistribution through fault valve action. Geol Soc London Spec Publ 88:3鈥?9CrossRef
    Strasser M, Moore GF, Kimura G, Kitamura Y, Kopf AJ, Lallemant S, Park JO, Screaton EJ, Su X, Underwood MB, Zhao X (2009) Origin and evolution of a splay fault in the Nankai accretionary wedge. Nat Geosci 2:648鈥?52CrossRef
    Tobin HJ, Saffer DM (2009) Elevated fluid pressure and extreme mechanical weakness of a plate boundary thrust, Nankai Trough subduction zone. Geology 37:679鈥?82, doi: 10.1130/G25752ACrossRef
    Tsuji T, Kimura G, Okamoto S, Kono F, Mochinaga H, Saeki T, Tokuyama H (2006) Modern and ancient seismogenic out-of-sequence thrusts in the Nankai accretionary prism: comparison of laboratory-derived physical properties and seismic reflection data. Geophys Res Let 33:L18309, doi:10.1029/2006GL027025CrossRef
    Tsuji T, Tokuyama H, Costa-Pisani P, Moore G (2008) Effective stress and pore pressure in the Nankai accretionary prism off the Muroto Peninsula, southwestern Japan. J Geophys Res 113:B11401, doi:10.1029/2007JB005002CrossRef
    Tsuji T, Dvorkin J, Mavko G, Nakata N, Matsuoka T, Nakanishi A, Kodaira S, Nishizawa O (2011) VP/VS ratio and shear-wave splitting in the Nankai Trough seismogenic zone: insights into effective stress, pore pressure, and sediment consolidation. Geophysics 76:WA71鈥揥A82, doi:10.1190/1.3560018CrossRef
    Tsuji T, Ashi J, Ikeda Y (2014) Strike-slip motion of a mega-splay fault system in the Nankai oblique subduction zone. Earth Planets Space 66:120, doi:10.1186/1880-5981-66-120CrossRef
    Tsuru T, Miura S, Park J-O, Ito A, Fujie G, Kaneda Y, No T, Katayama T, Kasahara J (2005) Variation of physical properties beneath a fault observed by a two-ship seismic survey off southwest Japan. J Geophys Res 110:B05405, doi:10.1029/2004JB003036CrossRef
    Yamada Y, McNeill L, Moore JC, Nakamura Y (2011) Structural styles across the Nankai accretionary prism revealed from LWD borehole images and their correlation with seismic profile and core data: results from NanTroSEIZE stage 1 expeditions. Geochem Geophys Geosyst 12:Q0AD15, doi:10.1029/2010GC003365CrossRef
    Yamada Y, Masui R, Tsuji T (2013) Characteristics of a tsunamigenic megasplay fault in the Nankai Trough. Geophys Res Let 40:4594鈥?598, doi:10.1002/grl.50888CrossRef
    Yamada Y, Baba K, Miyakawa A, Matsuoka M (2014) Granular experiments of thrust wedges: insights relevant to methane hydrate exploration at the Nankai accretionary prism. Mar Petrol Geol 51:34鈥?8, doi:10.1016/j.marpetgeo.2013.11.008CrossRef
    Yamano M, Kawada Y, Hamamoto H (2014) Heat flow survey in the vicinity of the branches of the megasplay fault in the Nankai accretionary prism. Earth Planets Space 66:126, doi:10.1186/1880-5981-66-126CrossRef
    Wu HY, Ma KF, Zoback M, Boness N, Ito H, Hung J-H, Hickman S (2007) Stress orientations of Taiwan Chelungpu-fault Drilling Project (TCDP) hole-A as observed from geophysical logs. Geophys Res Lett 34:L01303CrossRef
    Zhang YZ, Dusseault MB, Yassir NA (1994) Effects of rock anisotropy and heterogeneity on stress distributions at selected sites in North America. Eng Geol 37:181鈥?97CrossRef
    Zhou S (1994) A program to model the initial shape and extent of borehole breakout. Compt Rendus Geosci 20:1143鈥?160CrossRef
    Zoback MD (2007) Reservoir geomechanics. Cambridge Univ Press, Cambridge UK, p 464. ISBN 978-0521770699CrossRef
  • 作者单位:Yasuhiro Yamada (1) (2)
    Jun Shibanuma (1)

    1. Department of Earth Resources Engineering, Graduate School of Engineering, Kyoto University, Katsura, Kyoto, 615-8540, Japan
    2. Research and Development Center for Ocean Drilling Science (ODS), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 3173-25 Showa, Kanazawa, Yokohama, 236-0001, Japan
  • 刊物类别:Earth Sciences, general; Geology; Geophysics/Geodesy;
  • 刊物主题:Earth Sciences, general; Geology; Geophysics/Geodesy;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1880-5981
文摘
Borehole breakouts are enlargements and elongation of a borehole in a particular direction, caused by failure of the borehole wall rock due to concentration of stresses around the borehole, and thus, have been widely used to determine the in situ stress orientation. We used electrical borehole wall images obtained during offshore scientific drilling (IODP) that penetrated through a seismogenic megasplay fault in the Nankai Trough, off SW Japan, and extracted a number of borehole breakouts. Most of the breakouts show directions that can be explained by the regional convergence, but some are obviously rotated by faults and fractures in the megasplay fault zone and in its hanging wall. Stress magnitudes estimated from the width of the breakouts also show some decrease in the horizontal stresses, suggesting that slip along the faults and fractures release shear stress affecting these surfaces. Since such surfaces may have the capability to reactivate where the stresses affecting the surface are geometrically appropriate, the method presented in this paper may contribute to identifying active fault surfaces. This knowledge allows us to identify which surfaces need to be examined in detail to assess their potential for future activity. Keywords Borehole breakout Stress rotation Active fault identification Nankai Trough IODP
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.