A real-time visual object tracking system based on Kalman filter and MB-LBP feature matching
详细信息    查看全文
  • 作者:Zebin Cai ; Zhenghui Gu ; Zhu Liang Yu ; Hao Liu…
  • 关键词:Object tracking ; Feature matching ; Kalman filter ; Multi ; scale block local binary patterns
  • 刊名:Multimedia Tools and Applications
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:75
  • 期:4
  • 页码:2393-2409
  • 全文大小:2,962 KB
  • 参考文献:1. http://​gpu4vision.​icg.​tugraz.​at/​index.​php?​content=​subsites/​prost/​prost.​php
    2. http://​vision.​ucsd.​edu/​bbabenko/​project_​miltrack.​shtml
    3. http://​www.​cs.​toronto.​edu/​dross/​ivt/​
    4.Adam A, Rivlin E, Shimshoni I (2006) Robust fragments-based tracking using the integral histogram. In: Proceedings of the IEEE conference computing vision pattern recognition, vol 1, pp 798–805
    5.Ahonen T, Hadid A, Pietik A, Inen M (2004) Face recognition with local binary patterns. In: European conference on computer vision, vol 3021, pp 469–481
    6.Babenko B, Ming-Hsuan Y, Belongie S (2009) Visual tracking with online multiple instance learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 983–990
    7.Balan AO, Black MJ (2006) An adaptive appearance model approach for model-based articulated object tracking. In: Proceedings of the IEEE Proceedings of the IEEE conference on computer vision and pattern recognition, vol 1, pp 758–765
    8.Bay H, Tuytelaars T, Van Gool L (2006) Surf: Speeded up robust features. In: European conference on computer vision, vol 3951, pp 404–417
    9.Black MJ, Jepson AD (1998) Eigentracking: Robust matching and tracking of articulated objects using a view-based representation. Int’l J Comput Vision 26(1):63–84CrossRef
    10.Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):679–698CrossRef
    11.Collins RT, Liu Y, Leordeanu M (2005) Online selection of discriminative tracking features. IEEE Trans Pattern Anal Mach Intell 27(10):1631–1643CrossRef
    12.Comaniciu D, Ramesh V, Meer P (2000) Real-time tracking of non-rigid objects using mean shift. In: Proceedings of the IEEE conference on computer vision and pattern recognition, vol 2, pp 142–149
    13.Grabner H, Grabner M, Bischof H (2006) Real-time tracking via on-line boosting. In: Proceedings of the british machines vision conference, vol 1, p 6
    14.Grabner H, Leistner C, Bischof H (2008) Semi-supervised on-line boosting for robust tracking. In: European conference on computer vision, vol 5302, pp 234–247
    15.Grewal MS, Andrews AP (2001) Kalman filtering: Theory and practice using matlab. John Wiley & Sons, 2011
    16.Hager GD, Belhumeur PN (1998) Efficient region tracking with parametric models of geometry and illumination. IEEE Trans Pattern Anal Mach Intell 20(10):1025–1039CrossRef
    17.Hare S, Saffari A, Torr PHS (2011) Struck: Structured output tracking with kernels. In: Proceedings of the international conference on computer vision, pp 263–270
    18.Henriques JOF, Caseiro R, Martins P, Batista J (2012) Exploiting the circulant structure of tracking-by-detection with kernels. In: Computer Vision-ECCV 2012. Springer, Berlin Heidelberg, 2012, pp 702–715
    19.Isard M, Blake A (1996) Contour tracking by stochastic propagation of conditional density. In: European conference on computer vision, vol 1064, pp 343–356
    20.Isard M, Blake A (1998) Condensation conditional density propagation for visual tracking. Int J Comput Vis 29(1):5–28CrossRef
    21.Isard M, MacCormick J (2001) Bramble: A bayesian multiple-blob tracker. In: Proceedings of the international conference on computer vision, vol 2, pp 34–41
    22.Jepson AD, Fleet DJ, El-Maraghi TF (2003) Robust online appearance models for visual tracking. IEEE Trans Pattern Anal Mach Intell 25(10):1296–1311CrossRef
    23.Julier SJ, Uhlmann JK (1997) New extension of the kalman filter to nonlinear systems. In: Proceedings of the international symposium aerospace defense sensing, vol 3068, pp 182–193
    24.Kaihua Z, Lei Z, Ming-Hsuan Y (2013) Real-time object tracking via online discriminative feature selection. IEEE Trans Image Process 22(12):4664–4677CrossRef MathSciNet
    25.Kalal Z, Mikolajczyk K, Matas J (2012) Tracking-learning-detection. IEEE Trans Pattern Anal Mach Intell 34(7):1409–1422CrossRef
    26.Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME-J Basic Eng 82(1):35–45CrossRef
    27.Kwon J, Kwon J, Lee KM, Lee KM (2010) Visual tracking decomposition. In: Proceedings of the CVPR. IEEE, pp 1269–1276
    28.Liao S, Zhu X, Lei Z, Zhang L, Li SZ (2007) Learning multi-scale block local binary patterns for face recognition. In: Proceedings of the international conference biometrics, vol 4642, pp 828–837
    29.Lindeberg T (1993) Detecting salient blob-like image structures and their scales with a scale-space primal sketch: a method for focus-of-attention. Int J Comput Vision 11(3):283–318CrossRef
    30.Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110CrossRef
    31.Ojala T, Pietik A, Inen M, Harwood D (1996) A comparative study of texture measures with classification based on featured distributions. Pattern Recogn 29(1):51–59CrossRef
    32.Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987CrossRef
    33.Ross DA, Lim J, Lin RS, Yang MH (2008) Incremental learning for robust visual tracking. Int’l J Comput Vision 77(1-3):125–141CrossRef
    34.Salzmann M, Lepetit V, Fua P (2007) Deformable surface tracking ambiguities. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–8
    35.Shi J, Tomasi C (1994) Good features to track. In: Proceedings of the IEEE conference on computer vision and pattern recognition, vol 1, pp 593–600
    36.Welch G, Bishop G (1995) An introduction to the kalman filter. In: University of North Carolina at Chapel Hill Tech. Rep. TR-95-041
    37.Wu Y, Lim J, Yang MH (2013) Online object tracking: A benchmark. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2411–2418
    38.Yilmaz A, Javed O, Shah M (2006) Object tracking: A survey. ACM Comput Surv 38(4):13CrossRef
    39.Zeisl B, Leistner C, Saffari A, Bischof H (2010) On-line semi-supervised multiple-instance boosting. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1879–1879
    40.Zhang K, Song H (2012) Real-time visual tracking via online weighted multiple instance learning. Pattern Recogn 46:397–411CrossRef
    41.Zhang K, Zhang L, Yang MH (2012) Real-time compressive tracking. In: European conference on computer vision, vol 7574, pp 864–877
  • 作者单位:Zebin Cai (1)
    Zhenghui Gu (1)
    Zhu Liang Yu (1)
    Hao Liu (2)
    Ke Zhang (3)

    1. College of Automation Science and Engineering, South China University of Technology, Guangzhou, China
    2. Beijing Transportation Information Center, Beijing, China
    3. Beijing Transportation Operation Coordination Center, Beijing, China
  • 刊物类别:Computer Science
  • 刊物主题:Multimedia Information Systems
    Computer Communication Networks
    Data Structures, Cryptology and Information Theory
    Special Purpose and Application-Based Systems
  • 出版者:Springer Netherlands
  • ISSN:1573-7721
文摘
Visual tracking has very important applications in practice. Many proposed visual trackers are not suitable for real-time applications because of their huge computational loads or sensitivities against changing environments such as illumination variation. In this paper, we propose a new tracker which uses modified Multi-scale Block Local Binary Patterns (MB-LBP) like feature to characterize the tracked object. Such feature has low computational load and robustness against illumination variation. An updated appearance model is build based on the modified MB-LBP feature. The model is updated in every frame by replacing the appearance model with the features extracted from the most current detected image patch of target. Moreover, we use the predicted information about the target to constructed a smaller searching area for target in new frame. It greatly reduces computational load for target searching. Numerical experiments show that the drift effect of tracker is greatly avoided and the tracker has very effective and robust performance on various test videos.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.