Pretreatment of corn stover with acidic electrolyzed water and FeCl3 leads to enhanced enzymatic hydrolysis
详细信息    查看全文
  • 作者:Zhaobing Shen ; Chaonan Jin ; Haisheng Pei ; Jiping Shi ; Li Liu ; Junshe Sun
  • 关键词:Acidic electrolyzed water ; FeCl3 ; Pretreatment ; Enzymatic hydrolysis ; Lignocellulosic biomass
  • 刊名:Cellulose
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:21
  • 期:5
  • 页码:3383-3394
  • 全文大小:503 KB
  • 参考文献:1. Adney B, Baker J (1996) Measurement of cellulase activities: Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory. http://www.nrel.gov/biomass/pdfs/42628.pdf. Accessed 22 Apr 2014
    2. Ayebah B, Hung YC (2005) Electrolyzed water and its corrosiveness on various surface materials commonly found in food processing facilities. J Food Process Eng 28:247-64. doi:10.1111/j.1745-4530.2005.00424.x CrossRef
    3. Choi W-I, Park J-Y, Lee J-P, Oh Y-K, Park YC, Kim JS, Park JM, Kim CH, Lee J-S (2013) Optimization of NaOH-catalyzed steam pretreatment of empty fruit bunch. Biotechnol Biofuels 6:170. doi:10.1186/1754-6834-6-170 CrossRef
    4. Chundawat SPS, Venkatesh B, Dale BE (2007) Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnol Bioeng 96:219-31. doi:10.1002/bit.21132 CrossRef
    5. Ding S-Y, Liu Y-S, Zeng Y, Himmel ME, Baker JO, Bayer EA (2012) How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338:1055-060. doi:10.1126/science.1227491 CrossRef
    6. Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804-07. doi:10.1126/science.1137016 CrossRef
    7. Hsu T-A (1996) Pretreatment of biomass. In: Wyman CE (ed) Handbook on bioethanol: production and utilization. Taylor & Francis, Washington, DC, pp 179-12
    8. Hsu SY, Kao HY (2004) Effects of storage conditions on chemical and physical properties of electrolyzed oxidizing water. J Food Eng 65:465-71. doi:10.1016/j.jfoodeng.2004.02.009 CrossRef
    9. Huang Y-R, Hung Y-C, Hsu S-Y, Huang Y-W, Hwang D-F (2008) Application of electrolyzed water in the food industry. Food Control 19:329-45. doi:10.1016/j.foodcont.2007.08.012 CrossRef
    10. Ishizawa CI, Jeoh T, Adney WS, Himmel ME, Johnson DK, Davis MF (2009) Can delignification decrease cellulose digestibility in acid pretreated corn stover? Cellulose 16:677-86. doi:10.1007/s10570-009-9313-1 CrossRef
    11. Katayose M, Yoshida K, Achiwa N, Eguchi M (2007) Safety of electrolyzed seawater for use in aquaculture. Aquaculture 264:119-29. doi:10.1016/j.aquaculture.2006.08.050 CrossRef
    12. Kikuchi K, Ioka A, Oku T, Tanaka Y, Saihara Y, Ogumi Z (2009) Concentration determination of oxygen nanobubbles in electrolyzed water. J Colloid Interf Sci 329:306-09. doi:10.1016/j.jcis.2008.10.009 CrossRef
    13. Kim S, Holtzapple MT (2005) Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresour Technol 96:1994-006. doi:10.1016/j.biortech.2005.01.014 CrossRef
    14. Kim TH, Lee YY (2006) Fractionation of corn stover by hot-water and aqueous ammonia treatment. Bioresour Technol 97:224-32. doi:10.1016/j.biortech.2005.02.040 CrossRef
    15. Kim TH, Lee YY, Sunwoo C, Kim JS (2006) Pretreatment of corn stover by low-liquid ammonia recycle percolation process. Appl Biochem Biotechnol 133:41-7. doi:10.1385/abab:133:1:41 CrossRef
    16. Kim Y, Mosier NS, Ladisch MR (2009) Enzymatic digestion of liquid hot water pretreated hybrid poplar. Biotechnol Progr 25:340-48. doi:10.1002/bp.137 CrossRef
    17. Kumar R, Wyman CE (2009) Does change in accessibility with conversion depend on both the substrate and pretreatment technology? Bioresour Technol 100:4193-202. doi:10.1016/j.biortech.2008.11.058 CrossRef
    18. Len SV, Hung YC, Chung D, Anderson JL, Erickson MC, Morita K (2002) Effects of storage conditions and pH on chlorine loss in electrolyzed oxidizing (EO) water. J Agric Food Chem 50:209-12. doi:10.1021/jf010822v CrossRef
    19. Li F-J, Cheng Y-Q, Yin L-J, Liu H-J, Li L-T (2011) Application of electrolyzed water to improve angiotensin I-converting enzyme inhibitory activities of fermented soybeans started with Bacillus Subtilis B1. Int J Food Prop 14:145-56. doi:10.1080/10942910903147973 CrossRef
    20. Li C, Tanjore D, He W, Wong J, Gardner JL, Sale KL, Simmons BA, Seema S (2013) Scale-up and evaluation of high solid ionic liquid pretreatment and enzymatic hydrolysis of switchgrass. Biotechnol Biofuels 6:154. doi:10.1186/1754-6834-6-154 CrossRef
    21. Liao LB, Chen WM, Xiao XM (2007) The generation and inactivation mechanism of oxidation–reduction potential of electrolyzed oxidizing water. J Food Eng 78:1326-332. doi:10.1016/j.foodeng.2006.01.004 CrossRef
    22. Liu CG, Wyman CE (2005) Partial flow of compressed-hot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose. Bioresour Technol 96:1978-985. doi:10.1016/j.biortech.2005.01.012 CrossRef
    23. Liu L, Sun J, Cai C, Wang S, Pei H, Zhang J (2009a) Corn stover pretreatment by inorganic salts and its effects on hemicellulose and cellulose degradation. Bioresour Technol 100:5865-871. doi:10.1016/j.biortech.2009.06.048 CrossRef
    24. Liu L, Sun J, Li M, Wang S, Pei H, Zhang J (2009b) Enhanced enzymatic hydrolysis and structural features of corn stover by FeCl3 pretreatment. Bioresour Technol 100:5853-858. doi:10.1016/j.biortech.2009.06.040 CrossRef
    25. Lloyd TA, Wyman CE (2005) Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour Technol 96:1967-977. doi:10.1016/j.biortech.2005.01.011 CrossRef
    26. McMillan JD (1994) Pretreatment of lignocellulosic biomass. In: Himmel ME, Baker JO, Overend RP (eds) Enzymatic conversion of biomass for fuels production. American Chemical Society, Washington, DC, pp 292-24 CrossRef
    27. Monavari S, Galbe M, Zacchi G (2011) The influence of ferrous sulfate utilization on the sugar yields from dilute-acid pretreatment of softwood for bioethanol production. Bioresour Technol 102:1103-108. doi:10.1016/j.biortech.2010.08.077 CrossRef
    28. Mosier N, Hendrickson R, Ho N, Sedlak M, Ladisch MR (2005) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 96:1986-993. doi:10.1016/j.biortech.2005.01.013 CrossRef
    29. Nguyen QA, Tucker MP (2002) Dilute acid/metal salt hydrolysis of lignocellulosics. US 6423145
    30. Pei H, Liu L, Zhang X, Sun J (2012) Flow-through pretreatment with strongly acidic electrolyzed water for hemicellulose removal and enzymatic hydrolysis of corn stover. Bioresour Technol 110:292-96. doi:10.1016/j.biortech.2011.12.062 CrossRef
    31. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2006) Determination of sugars, byproducts, and degradation products in liquid fraction process samples: Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory. http://www.nrel.gov/docs/gen/fy08/42623.pdf. Accessed 22 Apr 2014
    32. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2012) Determination of structural carbohydrates and lignin in biomass: Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory. http://www.nrel.gov/docs/gen/fy13/42618.pdf. Accessed 22 Apr 2014
    33. Sun F, Chen H (2008) Organosolv pretreatment by crude glycerol from oleochemicals industry for enzymatic hydrolysis of wheat straw. Bioresour Technol 99:5474-479. doi:10.1016/j.biortech.2007.11.001 CrossRef
    34. Teymouri F, Laureano-Perez L, Alizadeh H, Dale BE (2004) Ammonia fiber explosion treatment of corn stover. Appl Biochem Biotechnol 113:951-63 CrossRef
    35. Tyrrell JWG, Attard P (2001) Images of nanobubbles on hydrophobic surfaces and their interactions. Phys Rev Lett 87:176104. doi:10.1103/PhysRevLett.87.176104 CrossRef
    36. Wang B, Wang X, Feng H (2010) Deconstructing recalcitrant Miscanthus with alkaline peroxide and electrolyzed water. Bioresour Technol 101:752-60. doi:10.1016/j.biortech.2009.08.063 CrossRef
    37. Wang X, Feng H, Li Z (2012) Ethanol production from corn stover pretreated by electrolyzed water and a two-step pretreatment method. Chin Sci Bull 57:1796-802. doi:10.1007/s11434-012-5079-1 CrossRef
    38. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY, Mitchinson C, Saddler JN (2009) Comparative sugar recovery and fermentation data following pretreatment of poplar wood by leading technologies. Biotechnol Progr 25:333-39. doi:10.1021/bp.142 CrossRef
    39. Yan YJ, Li TC, Ren ZW, Li GZ (1996) A study on catalytic hydrolysis of peat. Bioresour Technol 57:269-73. doi:10.1016/s0960-8524(96)00103-4 CrossRef
    40. Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuel Bioprod Bior 2:26-0. doi:10.1002/bbb.49 CrossRef
    41. Zhang M, Chen G, Kumar R, Xu B (2013) Mapping out the structural changes of natural and pretreated plant cell wall surfaces by atomic force microscopy single molecular recognition imaging. Biotechnol Biofuels 6:147. doi:10.1186/1754-6834-6-147 CrossRef
  • 作者单位:Zhaobing Shen (1) (3)
    Chaonan Jin (1)
    Haisheng Pei (2)
    Jiping Shi (1)
    Li Liu (1)
    Junshe Sun (2) (4)

    1. Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai, 201210, China
    3. University of Chinese Academy of Sciences, Beijing, 100049, China
    2. Chinese Academy of Agricultural Engineering, Beijing, 100125, China
    4. College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
  • ISSN:1572-882X
文摘
Pretreatment has been viewed as the most efficient strategy for lignocellulosic biomass-to-fermentable sugars conversion. In this study a novel pretreatment with acidic electrolyzed water (AEW) and FeCl3 was proposed and tested to deconstruct the recalcitrance of corn stover and enhance its subsequent cellulose-to-sugar conversion. The effects of AEW pH and FeCl3 concentration on hemicellulose degradation were investigated, and the results showed the highest hemicellulose removal (93.40?%) and recovery (93.04?%) were achieved at AEW pH 2.30 and FeCl3 concentration 0.05?mol/L. Further research on the properties of AEW solutions with FeCl3, including their pH, ORP, and DO revealed the synergistic effects of strong acidity and high oxidizing capacity of the solution could boost hemicellulose breakup and enhance the enzymatic hydrolysis of cellulose (92.00?%) by removing most of hemicellulose and increasing the accessibility and digestibility of cellulose. Therefore, these studies prove AEW coupled with FeCl3 pretreatment is an effective and promising approach in biomass-to-biofuel process.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.