Structural genomics studies of human caries pathogen Streptococcus mutans
详细信息    查看全文
  • 作者:Lanfen Li (1)
    Jie Nan (1) (3)
    Dan Li (1) (4)
    Erik Brostromer (1) (5)
    Zixi Wang (1)
    Cong Liu (1) (4)
    Qiaoming Hou (1)
    Xuexin Fan (1)
    Zhaoyang Ye (1)
    Xiao-Dong Su (1) (2)
  • 关键词:Structural genomics ; Lab automation ; HTP method development ; Protein crystallization ; Streptococcus mutans
  • 刊名:Journal of Structural and Functional Genomics
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:15
  • 期:3
  • 页码:91-99
  • 全文大小:1,372 KB
  • 参考文献:1. Montelione GT, Anderson S (1999) Structural genomics: keystone for a Human Proteome Project. Nat Struct Biol 6(1):11鈥?2 CrossRef
    2. Burley SK (2000) An overview of structural genomics. Nat Struct Biol 7:932鈥?34 CrossRef
    3. Gong WM, Liu HY, Niu LW, Shi YY, Tang YJ, Teng MK, Wu JH, Liang DC, Wang DC, Wang JF, Ding JP, Hu HY, Huang QH, Zhang QH, Lu SY, An JL, Liang YH, Zheng XF, Gu XC, Su XD (2003) Structural genomics efforts at the Chinese Academy of Sciences and Peking University. J Struct Funct Genomics 4(2鈥?):137鈥?39 CrossRef
    4. Kim Y, Dementieva I, Zhou M, Wu R, Lezondra L, Quartey P, Joachimiak G, Korolev O, Li H, Joachimiak A (2004) Automation of protein purification for structural genomics. J Struct Funct Genomics 5(1鈥?):111鈥?18 CrossRef
    5. Stojanoff V (2004) A novel approach to high-throughput screening; a solution for structural genomics? Structure聽12(7):1127鈥?128 CrossRef
    6. Service R (2005) Structural biology. Structural genomics, round 2. Science 307(5715):1554鈥?558 CrossRef
    7. Terwilliger TC, Stuart D, Yokoyama S (2009) Lessons from structural genomics. Annu Rev Biophys 38:371鈥?83 CrossRef
    8. Terwilliger TC (2011) The success of structural genomics. J Struct Funct Genomics 12(2):43鈥?4 CrossRef
    9. Thielmann Y, Koepke J, Michel H (2012) The ESFRI Instruct Core Centre Frankfurt: automated high-throughput crystallization suited for membrane proteins and more. J Struct Funct Genomics 13(2):63鈥?9 CrossRef
    10. Kloppmann E, Punta M, Rost B (2012) Structural genomics plucks high-hanging membrane proteins. Curr Opin Struct Biol 22(3):326鈥?32 CrossRef
    11. Loesche WJ (1986) Role of / Streptococcus mutans in human dental decay. Microbiol Rev 50(4):353鈥?80
    12. Bleiweis AS, Oyston PC, Brady LJ (1992) Molecular, immunological and functional characterization of the major surface adhesion of / Streptococcus mutans. Adv Exp Med Biol 327:229鈥?41 CrossRef
    13. Yamashita Y, Bowen WH, Burne RA, Kuramitsu HK (1993) Role of the / Streptococcus mutans gtf genes in caries induction in the specific-pathogen-free rat model. Infect Immun 61(9):3811鈥?817
    14. Quivey RG, Kuhnert WL, Hahn K (2001) Genetics of acid adaptation in oral streptococci. Crit Rev Oral Biol Med 12(4):301鈥?14 CrossRef
    15. Loesche WJ (1986) Role of / Streptococcus mutans in human dental decay. Microbiol Rev 50(4):353鈥?80
    16. http://www.who.int/oral_health/disease_burden/global/en/
    17. Ajdi膰 D, McShan WM, McLaughlin RE, Savi膰 G, Chang J, Carson MB, Primeaux C, Tian R, Kenton S, Jia H, Lin S, Qian Y, Li S, Zhu H, Najar F, Lai H, White J, Roe BA, Ferretti JJ (2002) Genome sequence of / Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A 99(22):14434鈥?4439 CrossRef
    18. Lemos JA, Quivey RG Jr, Koo H, Abranches J (2013) / Streptococcus mutans: a new gram-positive paradigm? Microbiology 159(Pt 3):436鈥?45 CrossRef
    19. Su XD, Liang Y, Li L, Nan J, Brostromer E, Liu P, Dong Y, Xian D (2006) A large-scale, high-efficiency and low-cost platform for structural genomics studies. Acta Crystallogr D Biol Crystallogr 62(Pt 8):843鈥?51 CrossRef
    20. Lei J, Li LF, Su XD (2009) Crystal Structures of Phosphotransferase System Enzymes PtxB (IIB(Asc)) and PtxA (IIA(Asc)) from / Streptococcus mutans. J Mol Biol 386(2):465鈥?75 CrossRef
    21. Hou HF, Liang YH, Li LF, Su XD, Dong YH (2008) Crystal Structures of / Streptococcus mutans 2鈥?Deoxycytidylate Deaminase and Its Complex with Substrate Analog and Allosteric Regulator dCTP.Mg(2聽+). J Mol Biol 377(1):220鈥?31 CrossRef
    22. Fu TM, Almqvist J, Liang YH, Li L, Huang Y, Su XD (2011) Crystal structures of cobalamin-independent methionine synthase (MetE) from / Streptococcus mutans: a dynamic zinc-inversion model. J Mol Biol 412(4):688鈥?97 CrossRef
    23. Li GL, Liu X, Nan J, Brostromer E, Li LF, Su XD (2009) Open-closed conformational change revealed by the crystal structures of 3-keto-L-gulonate 6-phosphate decarboxylase from / Streptococcus mutans. Biochem Biophys Res Commun 381(3):429鈥?33 CrossRef
    24. Wang KT, Desmolaize B, Nan J, Zhang XW, Li LF, Douthwaite S, Su XD (2012) Structure of the bifunctional methyltransferase YcbY (RlmKL) that adds the m7G2069 and m2G2445 modifications in Escherichia coli 23S rRNA. Nucleic Acids Res 40(11):5138鈥?148 CrossRef
    25. Fu TM, Liu X, Li L, Su XD (2010) The structure of the hypothetical protein smu.1377c from / Streptococcus mutans suggests a role in tRNA modification. Acta Crystallogr, Sect F: Struct Biol Cryst Commun 66(Pt 7):771鈥?75 CrossRef
    26. Wang Z, Li L, Su XD. Structural and functional characterization of a novel 伪/尾 hydrolase from cariogenic pathogen / Streptococcus mutans. Proteins. 2013 doi:10.1002/prot.24418
    27. Brostromer E, Nan J, Su XD (2007) An automated image-collection system for crystallization experiments using SBS standard microplates. Acta Crystallogr D Biol Crystallogr 63(Pt 2):119鈥?25 CrossRef
    28. Brostromer E, Nan J, Li L, Su XD (2009) Solid-liquid interface method (SLIM): a new crystallization method for proteins. Biochem Biophys Res Commun 386(4):634鈥?38 CrossRef
    29. Chayen NE, Saridakis E (2008) Protein crystallization: from purified protein to diffraction-quality crystal. Nat Methods 5(2):147鈥?53 CrossRef
    30. Chayen NE (2002) Tackling the bottleneck of protein crystallization in the post-genomic era. Trends Biotechnol 20(3):98 CrossRef
    31. Ellman GL (1959) Arch Biochem Biophys 82:70鈥?7 CrossRef
    32. Bulaj G, Kortemme T, Goldenberg DP (1998) Biochemistry 37:8965鈥?972 CrossRef
    33. Mi W, Li L, Liang Y, Su XD (2008) Improved crystal quality of human chloride intracellular channel protein 2 by 5,5鈥?Dithio-bis(2-nitrobenzoic acid) modification. Biochem Biophys Res Commun 368(4):919鈥?22 CrossRef
    34. Fan XX, Zhou YF, Liu X, Li L, Su XD (2012) Ellman鈥檚 reagent DTNB in promoting crystallization and structural determination of Anabeana CcbP. Acta Crystallogr, Sect F: Struct Biol Cryst Commun 68(Pt 11):1409鈥?414 CrossRef
    35. Zhao Y, Shi Y, Zhao W, Huang X, Wang D, Brown N, Brand J, Zhao J (2005) CcbP, a calcium-binding protein from Anabaena sp. PCC 7120, provides evidence that calcium ions regulate heterocyst differentiation. Proc Natl Acad Sci U S A 102:5744鈥?748 CrossRef
    36. Shi Y, Zhao W, Zhang W, Ye Z, Zhao J (2006) Regulation of intracellular free calcium concentration during heterocyst differentiation by HetR and NtcA in Anabaena sp. PCC 7120. Proc Natl Acad Sci U S A 103:11334鈥?1339 CrossRef
  • 作者单位:Lanfen Li (1)
    Jie Nan (1) (3)
    Dan Li (1) (4)
    Erik Brostromer (1) (5)
    Zixi Wang (1)
    Cong Liu (1) (4)
    Qiaoming Hou (1)
    Xuexin Fan (1)
    Zhaoyang Ye (1)
    Xiao-Dong Su (1) (2)

    1. State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
    3. Department of Cell and Molecular Biology, Uppsala University, 75124, Uppsala, Sweden
    4. UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA, 90095, USA
    5. Str枚m & Gulliksson AB, 220 07, Lund, Sweden
    2. Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, 100871, China
  • ISSN:1570-0267
文摘
Gram-positive bacterium Streptococcus mutans is the primary causative agent of human dental caries. To better understand this pathogen at the atomic structure level and to establish potential drug and vaccine targets, we have carried out structural genomics research since 2005. To achieve the goal, we have developed various in-house automation systems including novel high-throughput crystallization equipment and methods, based on which a large-scale, high-efficiency and low-cost platform has been establish in our laboratory. From a total of 1,963 annotated open reading frames, 1,391 non-membrane targets were selected prioritized by protein sequence similarities to unknown structures, and clustered by restriction sites to allow for cost-effective high-throughput conventional cloning. Selected proteins were over-expressed in different strains of Escherichia coli. Clones expressed soluble proteins were selected, expanded, and expressed proteins were purified and subjected to crystallization trials. Finally, protein crystals were subjected to X-ray analysis and structures were determined by crystallographic methods. Using the previously established procedures, we have so far obtained more than 200 kinds of protein crystals and 100 kinds of crystal structures involved in different biological pathways. In this paper we demonstrate and review a possibility of performing structural genomics studies at moderate laboratory scale. Furthermore, the techniques and methods developed in our study can be widely applied to conventional structural biology research practice.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.