Crosstalk between protective autophagy and NF-κB signal in high glucose-induced podocytes
详细信息    查看全文
  • 作者:Miaomiao Wei (1)
    Zhigui Li (1)
    Zhuo Yang (1)
  • 关键词:Nuclear factor ; kappa B ; Autophagy ; Apoptosis ; Podocytes ; High glucose
  • 刊名:Molecular and Cellular Biochemistry
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:394
  • 期:1-2
  • 页码:261-273
  • 全文大小:9,039 KB
  • 参考文献:1. Haraldsson B, Nystr?m J (2012) The glomerular endothelium: new insights on function and structure. Curr Opin Nephrol Hypertens 21:258-63 CrossRef
    2. Pavenstadt H, Kriz W, Kretzler M (2003) Cell biology of the glomerular podocyte. Physiol Rev 83:253-07
    3. Zhang Y, Chen B, Hou X-H, Guan G-J, Liu G, Liu H-Y, Li X-G (2007) Effects of mycophenolate mofetil, valsartan and their combined therapy on preventing podocyte loss in early stage of diabetic nephropathy in rats. Chin Med J 120:988-95
    4. Pagtalunan ME, Miller PL, Jumping-Eagle S, Nelson RG, Myers BD, Rennke HG, Coplon NS, Sun L, Meyer TW (1997) Podocyte loss and progressive glomerular injury in type II diabetes. J Clin Investig 99:342-48 CrossRef
    5. Meyer T, Bennett P, Nelson R (1999) Podocyte number predicts long-term urinary albumin excretion in Pima Indians with type II diabetes and microalbuminuria. Diabetologia 42:1341-344 CrossRef
    6. Ohsumi Y, Mizushima N (2004) Two ubiquitin-like conjugation systems essential for autophagy. Semin Cell Dev Biol 15:231-36 CrossRef
    7. Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9:1102-109 CrossRef
    8. Hartleben B, G?del M, Meyer-Schwesinger C, Liu S, Ulrich T, K?bler S, Wiech T, Grahammer F, Arnold SJ, Lindenmeyer MT (2010) Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Investig 120:1084-096 CrossRef
    9. Asanuma K, Tanida I, Shirato I, Ueno T, Takahara H, Nishitani T, Kominami E, Tomino Y (2003) MAP-LC3, a promising autophagosomal marker, is processed during the differentiation and recovery of podocytes from PAN nephrosis. FASEB J 17:1165-167
    10. Baehrecke EH (2005) Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol 6:505-10 CrossRef
    11. Gozuacik D, Kimchi A (2007) Autophagy and cell death. Curr Top Dev Biol 78:217-45 CrossRef
    12. Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Investig 115:2679-688 CrossRef
    13. Meijer AJ, Codogno P (2004) Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol 36:2445-462 CrossRef
    14. Mizushima N (2007) Autophagy: process and function. Genes Dev 21:2861-873 CrossRef
    15. Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717-721 CrossRef
    16. Rabinowitz JD, White E (2010) Autophagy and metabolism. Science 330:1344-348 CrossRef
    17. Blazquez-Medela AM, Lopez-Novoa JM, Martinez-Salgado C (2010) Mechanisms involved in the genesis of diabetic nephropathy. Curr Diabetes Rev 6:68-7 CrossRef
    18. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741-52 CrossRef
    19. Mundel P, Reiser J, Borja AZMa, Pavenst?dt H, Davidson GR, Kriz W, Zeller R (1997) Rearrangements of the cytoskeleton and cell contacts induce process formation during differentiation of conditionally immortalized mouse podocyte cell lines. Exp Cell Res 236:248-58 CrossRef
    20. Wang G-F, Wu S-Y, Xu W, Jin H, Zhu Z-G, Li Z-H, Tian Y-X, Zhang J-J, Rao J-J, Wu S-G (2010) Geniposide inhibits high glucose-induced cell adhesion through the NF-κB signaling pathway in human umbilical vein endothelial cells. Acta Pharmacol Sin 31:953-62 CrossRef
    21. D’agati V (2007) Podocyte injury in focal segmental glomerulosclerosis: lessons from animal models (a play in five acts). Kidney Int 73:399-06 CrossRef
    22. Susztak K, Raff AC, Schiffer M, B?ttinger EP (2006) Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 55:225-33 CrossRef
    23. Ma T, Zhu J, Chen X, Zha D, Singhal PC, Ding G (2013) High glucose induces autophagy in podocytes. Exp Cell Res 319:779-89 CrossRef
    24. Debnath J, Baehrecke EH, Kroemer G (2005) Does autophagy contribute to cell death? Autophagy 1:66-4 CrossRef
    25. Kroemer G, Levine B (2008) Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9:1004-010 CrossRef
    26. Yu L, Wan F, Dutta S, Welsh S, Liu Z, Freundt E, Baehrecke EH, Lenardo M (2006) Autophagic programmed cell death by selective catalase degradation. Proc Natl Acad Sci USA 103:4952-957 CrossRef
    27. González-Polo R-A, Boya P, Pauleau A-L, Jalil A, Larochette N, Souquère S, Eskelinen E-L, Pierron G, Saftig P, Kroemer G (2005) The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death. J Cell Sci 118:3091-102 CrossRef
    28. Boya P, González-Polo R-A, Casares N, Perfettini J-L, Dessen P, Larochette N, Métivier D, Meley D, Souquere S, Yoshimori T (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25:1025-040 CrossRef
    29. Sanchez-Ni?o MD, Sanz AB, Ihalmo P, Lassila M, Holthofer H, Mezzano S, Aros C, Groop P-H, Saleem MA, Mathieson PW (2009) The MIF receptor CD74 in diabetic podocyte injury. J Am Soc Nephrol 20:353-62 CrossRef
    30. Ding M, Cui S, Li C, Jothy S, Haase V, Steer BM, Marsden PA, Pippin J, Shankland S, Rastaldi MP (2006) Loss of the tumor suppressor Vhlh leads to upregulation of Cxcr4 and rapidly progressive glomerulonephritis in mice. Nat Med 12:1081-087 CrossRef
    31. Lee EY, Chung CH, Khoury CC, Yeo TK, Pyagay PE, Wang A, Chen S (2009) The monocyte chemoattractant protein-1/CCR2 loop, inducible by TGF-β, increases podocyte motility and albumin permeability. Am J Physiol Renal Physiol 297:F85–F94 CrossRef
    32. Katsuyama K, Fujinaka H, Yamamoto K, Nameta M, Yaoita E, Yoshida Y, Tomizawa S, Uchiyama M, Yamamoto T (2009) Expression of the chemokine fractalkine (FKN/CX3CL1) by podocytes in normal and proteinuric rat kidney glomerulus. Nephron Exp Nephrol 113:e45–e56 CrossRef
    33. Sayyed S, H?gele H, Kulkarni O, Endlich K, Segerer S, Eulberg D, Klussmann S, Anders H-J (2009) Podocytes produce homeostatic chemokine stromal cell-derived factor-1/CXCL12, which contributes to glomerulosclerosis, podocyte loss and albuminuria in a mouse model of type 2 diabetes. Diabetologia 52:2445-454 CrossRef
    34. Barisoni L, Nelson PJ (2007) Collapsing glomerulopathy: an inflammatory podocytopathy? Curr Opin Nephrol Hypertens 16:192-95 CrossRef
    35. Tipping PG (2008) Are podocytes passive or provocative in proteinuric glomerular pathology? J Am Soc Nephrol 19:651-53 CrossRef
    36. Hart SP, Dransfield I, Rossi AG (2008) Phagocytosis of apoptotic cells. Methods 44:280-85 CrossRef
    37. Ha H, Yu MR, Choi YJ, Kitamura M, Lee HB (2002) Role of high glucose-induced nuclear factor-κB activation in monocyte chemoattractant protein-1 expression by mesangial cells. J Am Soc Nephrol 13:894-02
    38. Deb DK, Chen Y, Zhang Z, Zhang Y, Szeto FL, Wong KE, Kong J, Li YC (2009) 1,25-Dihydroxyvitamin D3 suppresses high glucose-induced angiotensinogen expression in kidney cells by blocking the NF-κB pathway. Am J Physiol Ren Physiol 296:F1212–F1218 CrossRef
    39. Moscat J, Diaz-Meco MT, Albert A, Campuzano S (2006) Cell signaling and function organized by PB1 domain interactions. Mol Cell 23:631-40 CrossRef
    40. Sanz L, Diaz-Meco MT, Nakano H, Moscat J (2000) The atypical PKC-interacting protein p62 channels NF-κB activation by the IL-1-TRAF6 pathway. EMBO J 19:1576-586 CrossRef
    41. Moscat J, Diaz-Meco MT, Wooten MW (2007) Signal integration and diversification through the p62 scaffold protein. Trends Biochem Sci 32:95-00 CrossRef
    42. Komatsu M, Waguri S, Koike M, Sou Y-S, Ueno T, Hara T, Mizushima N, Iwata J-I, Ezaki J, Murata S (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131:1149-163 CrossRef
  • 作者单位:Miaomiao Wei (1)
    Zhigui Li (1)
    Zhuo Yang (1)

    1. College of Medicine, Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
  • ISSN:1573-4919
文摘
Despite a great deal of recent studies focused on the pivotal role of autophagy in maintaining podocyte energy homeostasis, the mechanisms of autophagy in regulating transcriptional factors under high glucose (HG) condition are not fully understood. Here, we evaluated the effect of HG on nuclear factor-kappa B (NF-κB) signaling and autophagic process. The results showed that HG promoted autophagy in podocytes. Bafilomycin A1 (Baf A1) further enhanced this effect, but 3-methyadenine (3-MA) inhibited it. The proautophagic effects of HG manifested in the form of enhanced podocyte expression of light chain 3 (LC3)-II. In these cells, blockade of NF-κB signal by ammonium pyrrolidinethiocarbamate constrained in effectively reducing LC3-II up-regulation and increasing podocyte apoptosis. Furthermore, the autophagy inhibitors, such as Baf A1 and 3-MA, significantly enhanced HG-induced NF-κB activation and increased apoptosis. Thus, we conclude that the accumulation of autophagosomes results from enhancement of the autophagic flux, but not the blockage of autophagosome–lysosome fusion by HG. We also prove that HG-induced apoptosis, autophagy, and NF-κB signal are in a close crosstalk through a yet undetermined mechanism in podocytes.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.