高温含尘烟气深度净化和高品位余热回收一体化技术与装备
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Integrated Technology and Equipment for Deep Cleaning of High Temperature Flue Gas and Recovery of High-grade Waste Heat
  • 作者:熊瑞 ; 刘开琪 ; 孙广超 ; 司凯凯 ; 马良 ; 黄晓蓉 ; 李珂
  • 英文作者:XIONG Rui;LIU Kai-Qi;SUN Guang-Chao;SI Kai-Kai;MA Liang;HUANG Xiao-Rong;LI Ke;State Key Laboratory of Multiphase Complex Systems,Institute of Process Engineering,Chinese Academy of Sciences;Shanxitaigang Stainless Steel Co.,LTD;
  • 关键词:高温烟气 ; 深度净化 ; 余热回收 ; 耦合 ; 陶瓷膜
  • 英文关键词:high temperature flue gas;;deep cleaning;;waste heat recovery;;coupling;;ceramic membrane
  • 中文刊名:GCRB
  • 英文刊名:Journal of Engineering Thermophysics
  • 机构:中国科学院过程工程研究所多相复杂系统国家重点实验室;山西太钢不锈钢股份有限公司;
  • 出版日期:2019-06-15
  • 出版单位:工程热物理学报
  • 年:2019
  • 期:v.40
  • 基金:国家重点研发计划(No.2016YFB0601100)
  • 语种:中文;
  • 页:GCRB201906032
  • 页数:8
  • CN:06
  • ISSN:11-2091/O4
  • 分类号:216-223
摘要
针对工业高温含尘烟气净化困难以及高品位余热难以回收的技术瓶颈,采用自制的陶瓷膜过滤管,通过耦合换热元件,首次研发出陶瓷膜高温除尘与换热一体化装置。通过结合亚松弛因子和数值模拟优化了一体化装置结构,使得装置内流场更均匀。通过液化气燃烧产生高温烟气并在烟道中可控地加入粉尘模拟高温含尘烟气,实验结果表明,该装置可对1000℃以上含尘烟气进行除尘与换热,除尘效率99.98%以上,净化后含尘浓度小于10 mg/m~3(标准工况);换热效率70%以上。研发的高温除尘与换热一体化装置在实现烟气深度净化的同时高效回收了高品位余热,为能源的高效利用提供了一种新的途径。
        Aiming at the technical bottleneck of industrial high temperature flue gas cleaning and high-grade waste heat recovery, the integrated equipment was developed for the first time using self-made ceramic membranes by coupling heat exchangers. The optimized structure and uniform flow field were obtained by sub-relaxation factor method and numerical simulation. The high temperature flue gas was simulated by the flue gas produced by liquefied gas in the combustion chamber and the dust which is controllably added to the flue pipe. The experiment results showed that the equipment can be applied for more than 1000℃ flue gas, and the dust removal efficiency was over 99.98%. The dust concentration after cleaning was less than 10 mg/Nm~3, and the heat exchange efficiency was over70%. The integrated equipment invented herein can efficiently recover high-grade waste heat while achieving deep cleaning of flue gas, and provide a new way for efficient utilization of energy.
引文
[1] Jouhara H, Khordehgah N, Almahmoud S, et al. Waste Heat Recovery Technologies and Applications[J]. Thermal Science&Engineering Progress, 2018, 6:268-289
    [2] Chen L, Yang B, Shen X, et al. Thermodynamic Optimization Opportunities for the Recovery and Utilization of Residual Energy and Heat in China's Iron and Steel Industry:A Case Study[J]. Applied Thermal Engineering,2015, 86(3):151-160
    [3] Huang F, Zheng J, Baleynaud J M, et al. Heat Recovery Potentials and Technologies in Industrial Zones[J].Journal of the Energy Institute, 2016, 90(6):951-961
    [4] U. S. Department of Energy. Waste heat recovery:technology and opportunities in US Industry[R]. Washington DC:US Department of Energy Industrial Technologies Program, 2008
    [5] Pehnt M, Bodeker J, Arens M, et al. Industrial Waste Heat-tapping Into a Neglected Efficiency Potential[C]//Proceedings of ECEEE, Stockholm:ABA Intercopy,2011:691-700
    [6] Sollesnes G, Helgerud H E. Potensialstudie for Utnyttelse Av Spillvarme Fra Norsk Industri(Survey of Potentials for Exploitation of Waste Heat From Norwegian Industry)[EB/OL].[2018-8-6].https://www.etde.org/etdeueb/servlets/purc/952328-2WBS5U/952328.pdf
    [7] Lu H, Price L, Zhang Q. Capturing the Invisible Resource:Analysis of Waste Heat Potential in Chinese Industry[J].Applied Energy, 2016, 161(6):497-511
    [8]王永刚,叶天鸿,翟玉杰,等.转炉煤气干法净化回收技术与湿法技术比较[J].工业安全与环保,2008, 34(5):10-12WANG Yonggang, YE Tianhong, ZHAI Yujie, et al. Comparison of Dry Cleaning and Recovery Technique for Converter Flue Gas With Wet One[J]. Industrial Safety&Environmental Protection, 2008, 34(5):10-12
    [9] Li Y, Zhu L. Cost of Energy Saving and CO_2, Emissions Reduction in China's Iron and Steel Sector[J]. Applied Energy, 2014, 130:603-616
    [10] Hasanbeigi A, Morrow W, Sathaye J, et al. A Bottomup Model to Estimate the Energy Efficiency Improvementand CO_2 Emission Reduction Potentials in the Chinese Iron and Steel Industry[J]. Energy, 2013, 50:315-325
    [11] Bonilla J J, Blanco J M, Lopez L, et al. Technological Recovery Potential of Waste Heat in the Industry of the Basque Country[J]. Applied Thermal Engineering, 1997,17(3):283-288
    [12] Cortes C, Gil A. Modeling the Gas and Particle Flow Inside Cyclone Separators[J]. Progress in Energy and Combustion Science, 2007, 33(5):409-452
    [13]颜深,孙国刚,孙占朋,等.颗粒床过滤除尘技术研究进展[J].化工进展,2017, 36(9):3152-3163YAN Shen, SUN Guogang, SUN Zhanpeng, et al. Advances in Research on Granular bed Filter for Dust Removal[J]. Chemical Industry&Engineering Progress,2017, 36(9):3152-3163
    [14]刘俊龙,梁淑亮,刘宇.电除尘器在气烧石灰竖窑炉顶高温烟气除尘中的应用[J].环境工程,2004, 22(3):83-84LIU, Junlong, LIANG Shuliang, LIU Yu. Application of Electrostatic Precipitator to Dedusting of High Temperature Flue Gas From Top of Gas-burning Lime Kiln[J].Environmental Engineering, 2004, 22(3):83-84
    [15]马军,王建忠,支浩,等.超高温烟气过滤除尘的研究进展[J].环境工程,2012, 30(s2):246-248MA Jun, WANG Jianzhong, ZHI Hao, et al. The Research Progress of Super High Temperature Flue Gas Filtration[J]. Environmental Engineering, 2012, 30(s2):246-248
    [16] Fino D, Saracco G, Specchia V. Filtration and Catalytic Abatement of Diesel Particulate From Stationary Sources[J]. Chemical Engineering Science, 2002, 57(22/23):4955-4966
    [17] Ambrogio M, Saracco G, Specchia V, et al. On the Generation of Aerosol for Diesel Particulate Filtration Studies[J]. Separation and Purification Technology, 2002, 27(3):195-209
    [18] Ahmadi G, Smith D H. Gas Flow and Particle Deposition in the Hot-gas Filter Vessel of the Pinon Pine Project[J].Powder Technology, 2002, 128(1):1-10
    [19] Sasatsu H, Misawa N, Shimizu M, et al. Predicting the Pressure Drop Across Hot Gas Filter(CTF)Installed in a Commercial size PFBC System[J]. Powder Technology,2001, 118(1/2):58-67
    [20] Hamelinck C N, Faaij A P C. Future Prospects for Production of Methanol and Hydrogen From Biomass[J]. Journal of Power Sources, 2002, 111(1):1-22
    [21] Heidenreich S. Hot Gas Filtration-A Review[J]. Fuel,2013, 104:83-94
    [22] Sharma S D, Dolan M, Park D, et al. A Critical Review of Syngas Cleaning Technologies—fundamental Limitations and Practical Problems[J]. Powder Technology,2008, 180(1/2):115-121
    [23] Lee H J, Suda H, Haraya K. Gas Permeation Properties in a Composite Mesoporous Alumina Ceramic Membrane[J]. Korean Journal of Chemical Engineering, 2005, 22(5):721-728
    [24]高铁瑜,张建英,徐廷相.陶瓷过滤介质的颗粒尺寸对过滤性能的影响[J].西安交通大学学报,2002, 36(5):482-485GAO Tieyu, ZHANG Jianying, XU Tingxiang. Effect of Ceramic Particle Diameter on Filtering Performances of Filter Media[J]. Journal of Xian Jiaotong University,2002, 36(5):482-485
    [25]焦海青,姬忠礼,陈鸿海,等.操作参数对陶瓷过滤管脉冲反吹清灰过程的影响[J].化工学报,2004, 55(7):1155-1160JIAO Haiqing, JI Zhongli, CHEN Honghai, et al. Influence of Operating Parameters on Pulse Cleaning Process of Ceramic Filter[J]. Journal of Chemical Industry&Engineering, 55(7):1155-1160
    [26]林庚,倪文,陈德平,等.陶瓷无机膜过滤除尘器的高温除尘机理研究[J].中国矿业,2007, 16(1):105-107LIN Geng, NI Wen, CHEN Deping, et al.The Porcelain and Ceramics Has no Machine Film to Filter in Addition to the Heat of the Dust Machine in Addition to Dust Mechanism Research. China Mining Magazine, 2007,16(1):105-107
    [27] Wei M, Fan Y, Luo L, et al. Design and Optimization of Baffled Fluid Distributor for Realizing Target Flow Distribution in a Tubular Solar Receiver[J]. Energy, 2017,136(1):126-134
    [28]付海明,赵友军.袋式除尘器流场动态测试及优化[J].中南大学学报(自然科学版),2010, 41(2):799-806FU Maiming, ZHAO Youjun. Dynamic Test and Optimization of Flow Field in Bag Filter[J]. Journal of Central South University, 2010, 41(2):799-806
    [29]张相亮,沈恒根,周睿,等.袋式除尘器进气均布板结构参数对气流分布的影响分析[J].环境工程,2012, 30(4):76-79ZHANG Xiangliang, SHEN Henggen, ZHOU Rui, et al.Analysis of the Structural Parameters of Intake Uniform Board Impacting on the Airflow Distribution in the Bag Filter[J]. Environmental Engineering, 2012, 30(4):76-69
    [30] Lupion M, Rodriguez-Galan M, Alonso-Farinas B, et al.Investigation Into the Parameters of Influence on Dust Cake Porosity in Hot Gas Filtration[J]. Powder Technology, 2014, 264:592-598
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.