月表光照区简单陨坑的有效太阳辐照度和温度的数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation of effective solar irradiance and temperatures at simple crater of lunar dayside
  • 作者:甘红 ; 李雄耀 ; 魏广飞
  • 英文作者:GAN Hong;LI XiongYao;WEI GuangFei;Analyzing and Testing Center, Guizhou Institute of Technology;State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology;Center for Lunar and Planetary Sciences, Institute of Geochemistry, Chinese Academy of Sciences;Center for Excellence in Comparative Planetology, Chinese Academy of Sciences;
  • 关键词:月球 ; 简单陨坑 ; 太阳辐照度 ; 温度 ; 数值模拟
  • 英文关键词:Moon;;simple crater;;solar irradiance;;temperature;;numerical simulation
  • 中文刊名:JGXK
  • 英文刊名:Scientia Sinica(Physica,Mechanica & Astronomica)
  • 机构:贵州理工学院分析测试中心;澳门科技大学月球与行星科学国家重点实验室;中国科学院地球化学研究所月球与行星科学研究中心;中国科学院比较行星学卓越创新中心;
  • 出版日期:2019-04-25 17:28
  • 出版单位:中国科学:物理学 力学 天文学
  • 年:2019
  • 期:v.49
  • 基金:国家自然科学基金(编号:41572037,41803052);; 中国科学院B类先导科技专项(编号:XDPB11);; 澳门科学技术发展基金(编号:119/2017/A3);; 贵州理工学院高层次人才科研启动项目(编号:XJGC20181290)资助项目
  • 语种:中文;
  • 页:JGXK201906010
  • 页数:12
  • CN:06
  • ISSN:11-5848/N
  • 分类号:101-112
摘要
太阳辐射是影响月表热环境的主要因素,前人的研究大多忽略月表地形的影响或仅考虑大尺度的地形起伏.本文以Banting简单陨坑(16.4°E, 26.6°N)为例,首先基于月球勘探轨道器(LRO)搭载的月球轨道器激光测高仪获取的地形数据构建了该陨坑的三维数值模型,计算了不同地方时条件下的有效太阳辐照度分布.其次,本文以具有Banting陨坑相同深径比的陨坑为研究对象,计算了其在月表任意位置和时刻的光照面积占陨坑面积的分布(光照面积占比).结果表明,在48.2°N/S和当地时间08:48–15:12的时空范围内,陨坑的光照面积占比达100%.最后,根据月表热辐射平衡模型计算了Banting陨坑在白天不同时刻的温度分布.通过与LRO月球辐射实验仪的测量温度对比,二者表现出较好的一致性,验证了数值模拟的可靠性.
        Solar radiation plays an important part in lunar surface thermal environment. The topographic effect was usually ignored in previous work, which might cause great uncertainties in surface temperature simulation. To better understand the surface temperatures of the craters at any time and on any location of the Moon, we simulated the effective solar irradiance and temperatures of the Banting crater as an example. In this work, we firstly constructed a three-dimensional Banting crater(16.4?E, 26.6?N) model based on the elevation data obtained from the Lunar Orbiter Laser Altimeter onboard Lunar Reconnaissance Orbiter(LRO), and then calculated the distribution of the effective solar irradiance at different local times. In addition, we calculated the distribution of percentage of illuminated area of the Banting-like craters at any day time and on all locations of the Moon. These results show that the craters located within 48.2?N/S and at the time of 08:48–15:12 are illuminated without any self-shading, while that located at high latitudes or near to dawn/dusk endure different degrees of the self-shading effect. Finally, we simulated the temperatures of the Banting crater at different local times based on the surface radiation balance. Compared to the temperatures measured by Diviner aboard LRO, the results show that the simulated temperatures are well consistent with the Diviner observations, which verified our models and simulation results.
引文
1 Li X Y,Wang S J,Cheng A Y.A review of lunar-surface temperature model(in Chinese).Adv Earth Sci,2007,22:480-485[李雄耀,王世杰,程安云.月球表面温度物理模型研究现状.地球科学进展,2007,22:480-485]
    2 Li X,Wang S,Zheng Y,et al.Estimation of solar illumination on the Moon:A theoretical model.Planet Space Sci,2008,56:947-950
    3 Feng X,Guo Q.The lunar surface temperature real-time model.J Remote Sensing,2017
    4 Liu S H.Lunar surface solar irradiance simulation model based on computational geometry(in Chinese).Spacecraft Eng,2014,23:19-26[刘书豪.应用计算几何的月面太阳辐照度仿真模型.航天器工程,2014,23:19-26]
    5 Meng Z G,Xu Y,Cai Z C,et al.Influence of lunar topography on simulated surface temperature.Adv Space Res,2014,54:2131-2139
    6 Zhang J D,Meng Z G,Ping J S,et al.Preliminary study of illumination characteristics of aristarchus plateau using LOLA data(in Chinese).JDeep Space Explor,2017,4:171-177[张吉栋,孟治国,平劲松,等.基于LOLA数据的Aristarchus高原光照特性初步研究.深空探测学报,2017,4:171-177]
    7 Zhang J D,Meng Z G,Zhu Y Z,et al.Research on solar radiation of Von K′arm′an Crater using LOLA data(in Chinese).J Deep Space Explor,2018,5:12-19[张吉栋,孟治国,朱蕴哲,等.基于LOLA数据的冯·卡门撞击坑太阳辐射研究.深空探测学报,2018,5:12-19]
    8 Colaprete A,Schultz P,Heldmann J,et al.Detection of water in the LCROSS ejecta Plume.Science,2010,330:463-468
    9 Rubanenko L,Aharonson O.Stability of ice on the Moon with rough topography.Icarus,2017,296:99-109
    10 Vasavada A.Near-surface temperatures on mercury and the Moon and the stability of polar ice deposits.Icarus,1999,141:179-193
    11 Noda H,Araki H,Goossens S,et al.Illumination conditions at the lunar polar regions by KAGUYA(SELENE)laser altimeter.Geophys Res Lett,2008,35:L24203
    12 Bussey D B J,McGover n J A,Spudis P D,et al.Illumination conditions of the south pole of the Moon derived using Kaguya topography.Icarus,2010,208:558-564
    13 Paige D A,Siegler M A,Zhang J A,et al.Diviner Lunar Radiometer observations of cold traps in the Moon’s south polar region.Science,2010,330:479-482
    14 Mazarico E,Neumann G A,Smith D E,et al.Illumination conditions of the lunar polar regions using LOLA topography.Icarus,2011,211:1066-1081
    15 Hao W F,Li F,Yan J G,et al.Lunar polar illumination based Chang’E-1 laser altimeter(in Chinese).Chin J Geophys,2012,55:46-54[郝卫峰,李斐,鄢建国,等.基于“嫦娥一号”激光测高数据的月球极区光照条件研究.地球物理学报,2012,55:46-52]
    16 Pettit E,Nicholson S B.Lunar radiation and temperatures.Astrophys J,1930,71:102-135
    17 Sinton W M.CHAPTER 11-Temperatures on the Lunar Surface.Heidelberg:Elsevier Inc.,1961
    18 Buhl D,Welch W J,Rea D G.Reradiation and thermal emission from illuminated craters on the lunar surface.J Geophys Res Planets,1968,73:5281-5295
    19 Davidsson B J R,Rickman H.Surface roughness and three-dimensional heat conduction in thermophysical models.Icarus,2014,243:58-77
    20 Paige D A,Foote M C,Greenhagen B T,et al.The lunar reconnaissance orbiter diviner lunar radiometer experiment.Space Sci Rev,2010,150:125-160
    21 Hayne P O,Bandfield J L,Siegler M A,et al.Global regolith thermophysical properties of the moon from the diviner lunar radiometer experiment.J Geophys Res Planets,2017,122:2371-2400
    22 Williams J P,Paige D A,Greenhagen B T,et al.The global surface temperatures of the Moon as measured by the Diviner Lunar Radiometer Experiment.Icarus,2017,283:300-325
    23 Bandfield J L,Ghent R R,Vasavada A R,et al.Lunar surface rock abundance and regolith fines temperatures derived from LRO Diviner Radiometer data.J Geophys Res Planets,2011,116:E00H02
    24 Vasavada A R,Bandfield J L,Greenhagen B T,et al.Lunar equatorial surface temperatures and regolith properties from the Diviner Lunar Radiometer Experiment.J Geophys Res Planets,2012,117:E00H18
    25 Chen S,Meng Z G,Zhang J D,et al.Research on microwave radiation characteristics at Tycho crater area(in Chinese).Sci Sin-Phys Mech Astron,2016,46:029608[陈思,孟治国,张吉栋,等.Tycho撞击坑地区微波热辐射特性研究.中国科学:物理学力学天文学,2016,46:029608]
    26 Sun L Z,Ling Z C,Zhang J,et al.The spectral characteristics and remote detection of lunar Mg-spinel:A case study of Tycho Crater(in Chinese).Sci Sin-Phys Mech Astron,2016,46:029607[孙灵芝,凌宗成,张江,等.月表镁尖晶石矿物的光谱特征与遥感探测:以第谷撞击坑为例.中国科学:物理学力学天文学,2016,46:029607]
    27 Pike R J.Size-dependence in the shape of fresh impact craters on the moon.In:Impact and Explosion Cratering:Planetary and Terrestrial Implications,Flagstaff,1977.489-509
    28 Ingersoll A P,Svitek T,Murray B C.Stability of polar frosts in spherical bowl-shaped craters on the moon,Mercury,and Mars.Icarus,1992,100:40-47
    29 Stopar J D,Hawke B R,Robinson M S,et al.Distribution,occurrence,and degradation of impact melt associated with small lunar craters.In:43rd Lunar and Planetary Science Conference.The Woodlands,2012.115-118
    30 Davidsson B J R,Rickman H,Bandfield J L,et al.Interpretation of thermal emission.I.The effect of roughness for spatially resolved atmosphereless bodies.Icarus,2015,252:1-21
    31 Aharonson O,Schorghofer N.Subsurface ice on Mars with rough topography.J Geophys Res Planets,2006,111:E11007
    32 Racca G D.Moon surface thermal characteristics for moon orbiting spacecraft thermal analysis.Planet Space Sci,1995,43:835-842
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.