磁性纳米铁对厌氧颗粒污泥特性及其微生物群落的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Magnetic Fe_3O_4 Nanoparticles on the Characteristics of Anaerobic Granular Sludge and Its Interior Microbial Community
  • 作者:宿程远 ; 郑鹏 ; 卢宇翔 ; 袁秋红 ; 赵力剑 ; 廖黎明 ; 黄智
  • 英文作者:SU Cheng-yuan;ZHENG Peng;LU Yu-xiang;YUAN Qiu-hong;ZHAO Li-jian;LIAO Li-ming;HUANG Zhi;School of Environment and Resources,Guangxi Normal University;University Key Laboratory of Karst Ecology and Environmental Change of Guangxi,Guangxi Normal University;
  • 关键词:磁性纳米铁 ; 厌氧颗粒污泥 ; 长期接触 ; 胞外聚合物 ; 微生物群落
  • 英文关键词:magnetic Fe3O4 nanoparticles;;anaerobic granular sludge;;long exposure;;extracellular polymer substrates;;microbial community
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:广西师范大学环境与资源学院;广西师范大学岩溶生态与环境变化研究广西高校重点实验室;
  • 出版日期:2017-09-27 17:26
  • 出版单位:环境科学
  • 年:2018
  • 期:v.39
  • 基金:国家自然科学基金项目(51641803);; 广西自然科学基金项目(2015GXNSFAA139267);; 广西研究生教育创新计划项目(XYCSZ2017062)
  • 语种:中文;
  • 页:HJKZ201803043
  • 页数:9
  • CN:03
  • ISSN:11-1895/X
  • 分类号:358-366
摘要
考察了磁性纳米铁(Fe3O4NPs)对厌氧颗粒污泥溶解性微生物产物(SMP)、疏松胞外聚合物(LB-EPS)、紧密胞外聚合物(TB-EPS)的影响,同时利用高通量测序技术对厌氧颗粒污泥内微生物群落结构的变化进行了分析.结果表明,在长期接触实验过程中,投加Fe3O4NPs的反应器对COD去除率为83.6%,与对照组相比降低了5.7%.对照组与实验组中厌氧颗粒污泥TB-EPS含量(以VSS计)分别为178.20 mg·g-1和138.24 mg·g-1,而SMP含量分别为34.88 mg·L-1和27.44 mg·L-1;同时投加Fe3O4NPs后,在LB-EPS三维荧光(EEM)光谱中,紫外光区类腐殖酸荧光峰消失,辅酶F420荧光峰强度有所降低.在长期接触实验后,甲烷杆菌属(Methanobacterium)所占比例从76.15%增至86.76%,而甲烷丝菌属(Methanothrix)所占比例从17.1%降至7.51%,Methanothrix对于Fe3O4NPs更为敏感;总细菌群落变化明显,其中变形菌门(Proteobacteria)所占比例从66.44%降至47.16%,放线菌门(Actinobacteria)所占比例从8.97%增至17.33%,拟杆菌门(Bacteroidetes)所占比例从8.07%增至17.74%,厚壁菌门和拟杆菌门比例的增加对有机物的厌氧水解过程发挥积极的作用.
        In this study,the effects of magnetic Fe_3O_4 nanoparticles(Fe_3O_4 NPs) on soluble microbial products(SMP),loosely bound extracellular polymeric substances(LB-EPS),and tightly bound extracellular polymeric substances(TB-EPS) in anaerobic granular sludge were examined. In addition,the anaerobic granular sludge interior microbial community dynamics were investigated using high-throughput sequencing. The results demonstrated that the removal rate of COD was 83. 6% after long-term exposure in the experimental reactor,namely,the anaerobic reactor containing Fe_3O_4 NPs. It was reduced by 5. 7% in comparison with the removal rate in the control reactor. The total amount of TB-EPS in anaerobic granular sludge in the experimental and control reactors was178. 20 mg·g-1 and 138. 24 mg·g-1,respectively,while the total amount of SMP in anaerobic granular sludge was 34. 88 mg·L-1 and27. 44 mg·L-1,respectively. With regard to the LB-EPS in anaerobic granular sludge in the experimental reactor,the peak of humic acid disappeared and the peak intensity of coenzyme F420 decreased slightly using excitation-emission matrix(EEM) fluorescence spectra. In terms of the microbial community dynamics in the experimental reactor,the abundance of Methanobacterium was greatly augmented from 76. 15% to 86. 76%; whereas,the abundance of Methanothrix decreased from 17. 1% to 7. 51%. This indicated that Methanothrix was more sensitive to Fe_3O_4 NPs. Moreover,the changes in bacterial communities were evident:(1) the abundance of Proteobacteria dropped from 66. 44% to 47. 16%;(2) the abundance of Actinobacteria grew from 8. 97% to 17. 33%; and(3) the abundance of Bacteroidetes increased from 8. 07% to 17. 74%. The increasing abundance of Actinobacteria and Bacteroidetes plays a positive role in the anaerobic hydrolysis of organic matter.
引文
[1]Kong Q,Wang Z B,Shu L,et al.Characterization of the extracellular polymeric substances and microbial community of aerobic granulation sludge exposed to cefalexin[J].International Biodeterioration&Biodegradation,2015,102:375-382.
    [2]薛雨,陈宇瑛.头孢菌素类抗生素的最新研究进展[J].中国抗生素杂志,2011,36(2):86-92.Xue Y,Chen Y Y.New development of cephalosporin antibiotics[J].Chinese Journal of Antibiotics,2011,36(2):86-92.
    [3]Meng L W,Li X K,Wang S T,et al.The long-term impact of cefalexin on organic substrate degradation and microbial community structure in EGSB system[J].Chemosphere,2017,184:215-223.
    [4]Lin B K,Lyu J,Lyu X J,et al.Characterization of cefalexin degradation capabilities of two Pseudomonas strains isolated from activated sludge[J].Journal of Hazardous Materials,2015,282:158-164.
    [5]李再兴,张非非,左剑恶,等.SPE-UFLC-MS/MS法测定制药废水中四环素类抗生素[J].环境科学与技术,2013,36(7):139-142.Li Z X,Zhang F F,Zuo J E,et al.Determination of tetracyclines in pharmaceutical wastewater by solid phase extraction-ultra fast liquid chromatography-tandem mass spectrometry[J].Environmental Science&Technology,2013,36(7):139-142.
    [6]Li H Y,Li Y L,Xiang L J,et al.Heterogeneous photo-Fenton decolorization of OrangeⅡover Al-pillared Fe-smectite:response surface approach,degradation pathway,and toxicity evaluation[J].Journal of Hazardous Materials,2015,287:32-41.
    [7]Gan P P,Li S F Y.Efficient removal of Rhodamine B using a rice hull-based silica supported iron catalyst by Fenton-like process[J].Chemical Engineering Journal,2013,229:351-363.
    [8]Gao Y Y,Gan H H,Zhang G K,et al.Visible light assisted Fenton-like degradation of rhodamine B and 4-nitrophenol solutions with a stable poly-hydroxyl-iron/sepiolite catalyst[J].Chemical Engineering Journal,2013,217:221-230.
    [9]Pouran S R,Raman A A A,Wan Daud W M A.Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions[J].Journal of Cleaner Production,2014,64:24-35.
    [10]李冬梅,徐光亮.制备超顺磁性Fe3O4纳米粒子的研究进展[J].中国粉体技术,2008,14(4):55-58.Li D M,Xu G L.Research progress on preparation of superparamagnet Fe3O4nano-particles[J].China Powder Science and Technology,2008,14(4):55-58.
    [11]文德,刘妙丽,李强林.超顺磁性Fe3O4纳米粒子的制备和表征[J].四川师范大学学报(自然科学版),2011,34(3):385-387.Wen D,Liu M L,Li Q L.Preparation and characterization of super-paramagnetic Fe3O4nanoparticles[J].Journal of Sichuan Normal University(Natural Science),2011,34(3):385-387.
    [12]Ma B R,Wang S,Li Z W,et al.Magnetic Fe3O4nanoparticles induced effects on performance and microbial community of activated sludge from a sequencing batch reactor under long-term exposure[J].Bioresource Technology,2017,225:377-385.
    [13]Li W C,Chen H,Jin Y,et al.Treatment of 3,4,5-trimethoxybenzaldehyde and Di-bromo-aldehyde manufacturing wastewater by the coupled Fenton pretreatment and UASB reactor with emphasis on optimization and chemicals analysis[J].Separation and Purification Technology,2015,142:40-47.
    [14]Xu P,Han H J,Zhuang H F,et al.Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of heterogeneous Fenton oxidation and biological process[J].Bioresource Technology,2015,182:389-392.
    [15]He J,Yang X F,Men B,et al.Heterogeneous Fenton oxidation of catechol and 4-chlorocatechol catalyzed by nano-Fe3O4:role of the interface[J].Chemical Engineering Journal,2014,258:433-441.
    [16]Ni S Q,Ni J Y,Yang N,et al.Effect of magnetic nanoparticles on the performance of activated sludge treatment system[J].Bioresource Technology,2013,143:555-561.
    [17]Zhang W J,Cao B D,Wang D S,et al.Influence of wastewater sludge treatment using combined peroxyacetic acid oxidation and inorganic coagulants re-flocculation on characteristics of extracellular polymeric substances(EPS)[J].Water Research,2016,88:728-739.
    [18]Zhu L,Zhou J H,Lv M L,et al.Specific component comparison of extracellular polymeric substances(EPS)in flocs and granular sludge using EEM and SDS-PAGE[J].Chemosphere,2015,121:26-32.
    [19]Wang Z P,Zhang T.Characterization of soluble microbial products(SMP)under stressful conditions[J].Water Research,2010,44(18):5499-5509.
    [20]Zhen G Y,Lu X Q,Li Y Y,et al.Innovative combination of electrolysis and Fe(Ⅱ)-activated persulfate oxidation for improving the dewaterability of waste activated sludge[J].Bioresource Technology,2013,136:654-663.
    [21]Ma Q,Qu Y Y,Shen W L,et al.Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing[J].Bioresource Technology,2015,179:436-443.
    [22]Chen K,Wang X H,Li X F,et al.Impacts of sludge retention time on the performance of submerged membrane bioreactor with the addition of calcium ion[J].Separation and Purification Technology,2011,82:148-155.
    [23]Li K,Wei D,Yan T,et al.Responses of soluble microbial products and extracellular polymeric substances to the presence of toxic 2,6-dichlorophenol in aerobic granular sludge system[J].Journal of Environmental Management,2016,183:594-600.
    [24]李丹,何小松,席北斗,等.生活垃圾堆肥渗滤液污染物组成与演化规律研究[J].环境科学,2013,34(7):2918-2924.Li D,He X S,Xi B D,et al.Composition and transformation of leachates during municipal solid waste composting[J].Environmental Science,2013,34(7):2918-2924.
    [25]Luo J H,Hao T W,Wei L,et al.Impact of influent COD/N ratio on disintegration of aerobic granular sludge[J].Water Research,2014,62:127-135.
    [26]Dong F,Zhao Q B,Zhao J B,et al.Monitoring the restart-up of an upflow anaerobic sludge blanket(UASB)reactor for the treatment of a soybean processing wastewater[J].Bioresource Technology,2010,101(6):1722-1726.
    [27]Suanon F,Sun Q,Li M Y,et al.Application of nanoscale zero valent iron and iron powder during sludge anaerobic digestion:impact on methane yield and pharmaceutical and personal care products degradation[J].Journal of Hazardous Materials,2017,321:47-53.
    [28]Jang H M,Ha J H,Park J M,et al.Comprehensive microbial analysis of combined mesophilic anaerobic-thermophilic aerobic process treating high-strength food wastewater[J].Water Research,2015,73:291-303.
    [29]Luo G,Li J,Li Y,et al.Performance,kinetics behaviors and microbial community of internal circulation anaerobic reactor treating wastewater with high organic loading rate:role of external hydraulic circulation[J].Bioresource Technology,2016,222:470-477.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.